簡易檢索 / 詳目顯示

研究生: 蔡德昌
Tsai, De-Chang
論文名稱: 真空連鑄製程凝固微觀組織數值模擬研究
Numerical Simulation for the Solidification Processes of Microstructure by Vacuum Continuous Casting
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 173
中文關鍵詞: 真空連續鑄造微組織模擬有限差分法CA法
外文關鍵詞: vacuum continuous casting, microstructure simulation, finite difference method, cellular automaton method
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用數值模擬方法,針對真空連鑄製程來探討直徑8mm的無氧銅(OFC)棒材微觀組織的演化規律。採用巨觀-微觀耦合的方法,分別建立了連鑄過程的溫度場模型和微組織預測模型。考慮連鑄速度、澆鑄溫度、冷卻強度和鑄件尺寸等連鑄工藝參數,對凝固過程中固液界面的位置、形狀和微觀組織的晶粒成核、成長等影響進行了模擬研究。
    巨觀模擬方面,採用有限差分法(FDM)進行巨觀尺度的溫度場計算,並用溫度回升法處理凝固潛熱的釋放。微觀模擬方面,利用三維的Cellular Automaton(3D-CA)模型,並考慮了結晶學的優先生長方向和晶粒生長的動力學理論,模擬了微觀尺度的晶粒競爭生長過程和最終的晶粒形態。
    經由模擬結果表明,在真空連鑄過程中,連鑄速度對固液界面的位置、形狀和晶粒的生長形態影響較大,隨著連鑄速度的增大,固液界面的位置明顯往模具出口處接近;固液界面的形狀也由接近平界面的形狀轉為微凹的圓弧狀甚至是深凹的狹長形狀;晶粒的生長形態也由維持軸向生長的晶粒形態轉為軸向與徑向混合生長的晶粒形態及完全徑向生長的晶粒形態。在模擬與實際鑄件實驗相互驗證方面,也得到了相當吻合的結果。進一步針對各連鑄工藝參數對固液界面位置、形狀及微觀組織的影響得到,鑄件尺寸對固液界面位置、形狀和晶粒形態影響較大;澆鑄溫度和冷卻強度則對固液界面的位置產生影響,而對於固液界面的形狀和微觀組織的生長形態影響較小。
    綜合以上模擬結果,可以得出一形狀因子(η)的判別式,藉由連鑄速度、澆鑄溫度、鑄件尺寸、冷卻強度係數和鑄件出口表面溫度等影響因素獲得與固液界面形狀的關係式:當η ≥ 4.4時,可以得到接近平界面的固液界面形狀(軸向生長的晶粒形態);4.4>η>1.9時,為圓弧的界面形狀(軸向和徑向混合生長的晶粒形態);當η ≤ 1.9時,得到深凹狹長的界面形狀(完全徑向的晶粒形態),此形狀因子(η)可以成為判斷連鑄過程固液界面形狀與晶粒形態的一種參考方法。
    最後為了進一步測試本微組織模擬預測系統的通用性,將此模擬系統應用於二元合金體系(黃銅合金),搭配不同的連鑄參數條件進行微組織模擬預測,並與實際連鑄實驗進行定性與定量的相互比對,均獲得了相接近的模擬結果,驗證了模擬系統的通用性與準確性。

    In this study, the numerical simulation method is used to analyse the microstructure evolution of 8-mm-diameter oxygen-free copper (OFC) rods during the vacuum continuous casting (VCC) process. The macro-microscopic coupling method is adopted to develop a temperature field model and a microstructure prediction model. The effects of various casting parameters including casting speed, pouring temperature, cooling rate and casting dimension on the location and shape of the solid-liquid (S/L) interface, nucleation and grain growth of solidified microstructure are considered in our model.
    At the macroscopic scale, the finite difference method (FDM) is utilized to solve the government equation of heat transfer which includes using the temperature recovery method to incorporate the release of latent heat during solidification. At the microscopic scale, a three dimensional cellular automaton (3D-CA) model which considers the preferred crystallographic orientation of nucleation and kinetics of grain growth is used to simulate the competition of grain growth thus defining the resulting grain structure of the cast.
    Simulation results show that the casting speed has a large effect on the position and shape of the S/L interface and grain morphology. With an increase of casting speed, the position of the S/L interface moves toward the orifice of the casting mould and the shape changes from a planar shape into a semi-ellipse shape, and eventually a narrower, pear shape. The grain morphology indicates a change from axial growth to axial-radial growth or completely radial growth. The simulation predictions agree well with the microstructure observations of cast specimens. Further analysis of the effects of other casting parameters on the position and shape of the S/L interface reveals that casting dimension has more influence on the position and shape of the S/L interface and grain morphology than do pouring temperature and cooling rate.
    The above simulation results can be summarized to obtain a discriminant of shape factor (η), which defines the shape of the S/L interface and grain morphology with respect to casting speed, pouring temperature, casting dimension, cooling rate coefficient and outlet temperature of the oxygen-free copper (OFC) rod. When η ≥ 4.4, the shape of the S/L interface is close to a flat plane (axial growth); the shape is a semi-ellipse (axial-radial growth) when 4.4>η>1.9 and narrow pear (radial growth) when η ≤ 1.9.
    Finally, the extendibility of microstructure prediction system is further examined. The microstructure of the binary alloy system (brass alloy) is simulated and predicted by the simulation system with different parameters of the continuous casting process. Comparing with the actual casting qualitatively and quantitatively, the experiment results are close to the simulation results. It verifies the extendibility and accuracy of the simulation system.

    總目錄 第一章 緒論................................................1 1.1 研究背景................................................1 1.2 連續鑄造製程...........................................2 1.3 文獻回顧................................................3 1.3.1 凝固過程巨觀尺度模擬………………...……………….4 1.3.2 凝固過程微觀尺度模擬………………...……………….5 1.3.3 連鑄製程數值模擬的研究方法與發展…...…………….8 1.4 研究目的與內容.........................................9 第二章 理論基礎............................................12 2.1傳熱的基本方式……….............................. ..12 2.1.1 熱傳導..............................................12 2.1.2 熱對流............................... .........13 2.1.3 熱輻射............................... ...........14 2.2連鑄熱物理過程的基礎理論................................15 2.2.1連鑄過程凝固傳熱控制方程……………………………16 2.2.2連鑄過程鑄件運動狀態模擬……………………………17 2.2.3連鑄過程傳熱現象分析…………………………………18 2.3 CA法的基本思想與特徵………………………………….....21 2.4 形核規則…………………………………...................23 2.5 成長規則…………………………………....................26 第三章 數值方法...........................................39 3.1連鑄過程凝固傳熱基本數學模型建立...........................39 3.1.1凝固傳熱差分方程建立..................................40 3.1.2鑄件移動問題及其處理方法……………………………43 3.1.3邊界條件………………….………………………………46 3.1.4初始條件………………….………………………………47 3.1.5潛熱處理………………….………………………………50 3.1.6熱物性參數的取值……….………………………………54 3.2 凝固微觀組織模擬的數值方法..............................55 3.2.1晶粒形核模擬.........................................56 3.2.2晶粒成長模擬..........................................58 3.2.3巨-微觀尺度的耦合......................................59 3.2.4時間間距計算..........................................61 3.3 計算流程..............................................61 第四章 實驗方法與步驟......................................81 4.1真空連續鑄造設備…………………………………………81 4.2真空連續鑄造工藝流程…………………….………………82 第五章 結果與討論.........................................93 5.1連鑄過程引拔參數設定………….…………………………...93 5.2連鑄過程溫度場的分佈情形………………………………..94 5.3微組織模擬與實際鑄件相互驗證……………..……………95 5.3.1低速連鑄模擬結果與實際鑄件相驗證....................95 5.3.2中速連鑄模擬結果與實際鑄件相驗證........................96 5.3.3高速連鑄模擬結果與實際鑄件相驗證........................96 5.3.4晶粒大小的比較......................................96 5.4連鑄過程微觀組織的演化機制…………………………….97 5.4.1不同連鑄速度對微觀組織的影響............................97 5.4.2不同拉停時間對微觀組織的影響...........................98 5.4.3固液界面形狀對凝固晶粒演化過程的影響....................99 5.5連鑄參數對固液界面與微觀組織影響的探討…………….101 5.5.1澆鑄溫度對固液界面與微觀組織的影響.....................102 5.5.2冷卻強度對固液界面與微觀組織的影響......................103 5.5.3鑄件尺寸對固液界面與微觀組織的影響......................105 5.5.4形狀因子與固液界面形狀的關係...........................106 5.5.5微組織模擬系統通用性測試...............................107 第六章 結論.........................................152 未來研究方向……………………………………………………155 參考文獻.............................................156 附錄A 複合導熱係數的概念…………………………………….. 162 附錄B TDMA(Thomas algorithm)的求解…………………………..167 附錄C 標準高斯正態分佈函數的近似求解…………………..…..169 附錄D ASTM 網格法…………………………………………..…..171 附錄E 形狀因子( )的計算…………………………………..…..172 自述………………………………………………………………….173

    1.W. J. Boettinger and S. R. coriell, “Solidification Microstructure: Recent Development, Future Directions”, Acta Metall. Mater., Vol. 48, pp. 43-70, 2000.
    2.Wolfgang Schneider, “Continuous Casting”, Wiley-VCH, 2000.
    3.熊守美, “鑄造過程模擬仿真技術“, 機械工業出版社, 2005.
    4.Dierk Raabe, “Computational Materials Science“, Wiley-VCH, 1998.
    5.R. D. Pehlke, “Computer Simulation of Solidification of Casting With a Chill“, AFS Transactions, Vol. 84, pp. 647-652, 1976.
    6.W. C. Erichson, “Computer Simulation of Solidification“, AFS Cast Metals Res., Vol. 5, pp. 30-41, 1980.
    7.E. Niyama, ”A Method of Shrinkage Prediction and Its Application to Steel Casting Practice”, Imono, Vol. 59, pp. 261-266, 1987.
    8.V. J. Papazoglou and K. Masubuchi, “Numerical Analysis of Thermal Stresses During Welding Including Phase Transfermation Effects”, Tran. ASME Journal of Pressure Vessel Technology, Vol. 104, pp. 198-203, 1982.
    9.W. Oldfield, “A Quantitative Approach to Casting Solidification, Freezing of Cast Iron”, ASM Trans., Vol. 59, pp. 945-960, 1996.
    10.J. A. Spittle and S. G. R. Brown, “Computer Simulation of the Effects of Alloy Variables on the Grain Structure of Casting”, Acta Metall. Mater., Vol. 37, pp. 1803-1810, 1989.
    11.P. Zhu and R. W. Smith, “Dynamic Simulation of Crystal Growth by Monte Carlo Method-Ι. Model Description and Kinetics”, Acta Metall. Mater., Vol. 40, pp. 683-692, 1992.
    12.P. Zhu and R. W. Smith, “Dynamic Simulation of Crystal Growth by Monte Carlo Method-ΙΙ. Ingot Microstructures”, Acta Metall. Mater., Vol. 40, pp. 3367-3379, 1992.
    13.何東, “晶粒組織演化的元胞自動機模擬”, 哈爾濱工業大學碩士論文, 2007.
    14.M. Rappaz and Ch. A. Gandin, “Probabilistic Modeling of Microstructure Formation in Solidification Processes”, Acta Metall. Mater., Vol. 41, pp. 345-360, 1993.
    15.M. Rappaz and Ch. A. Gandin, “A Coupled Finite Element-Cellular Automaton Model for the Prediction of Dendritic Grain Structure in Solidification Processes”, Acta Metall. Mater., Vol. 42, pp. 2233-2246, 1994.
    16.J. F. Mccarthy, “Phase Diagram Effects Phase-Field Models of Dendritic Growth in Binary Alloys”, Acta Metall. Mater., Vol. 45, pp. 4077-4078, 1997.
    17.J. S. LEE and T. SUZYKI, “Numerical Simulation of Isothermal Dendritic Growth by Phase-Field Model”, ISIJ International, Vol. 39, pp. 149-160, 1999.
    18.A. W. D. A. Hills, “Simplified Theoretical Treatment for the Transfer of Heat in Continuous-Casting Machine Mold”, ISIJ International, Vol. 1, pp. 18-26, 1965.
    19.R.D. Pehlke, “Metal-Mold Interfacial Heat Transfer”, Metall. Trans. B, Vol. 16B, pp. 585-594, 1985.
    20.X. Wenhua and X. Shenghong, “Numerical Simulation of Temperature Field of Copper and Copper Alloy in Horizontal Continuous Casting”, American Society of Mechanical Engineers, Heat Transfer Division, pp. 321-329, 1996.
    21.M. Rappaz and Ch. A. Gandin, “Prediction of Grain Structures in Various Solidification Processes”, Metall. Trans. A, Vol. 27A, pp. 695-705, 1996.
    22.K. Harkki and J. Miettinen, “Mathematical Modeling of Copper and Brass Upcasting”, Metall. Trans. B, Vol. 30B, pp. 75-98, 1999.
    23.S. Hibbins, “Development and Validation of a Thermal Model of the Direct Chill Casting of AZ31 Magnesium Billets”, Metall. Trans. A, Vol. 35A, pp. 3843-3854, 2004.
    24.M. Yamazaki and K. Ohsasa, “Numerical Simulation of Solidification Structure Formation during Continuous Casting in Fe-0.7Mass%C Alloy Using Cellular Automaton Method”, ISIJ International, Vol. 46, pp. 903-908, 2006.
    25.梁海奇, “灰鑄鐵棒材水平連續鑄造凝固過程的數值模擬”, 西安交通大學碩士論文, 1997.
    26.張雷, “鑄鐵水平連鑄用圓結晶器水道結構及冷卻水參數對水冷套換熱效果及鑄坯凝固影響的研究”, 西安理工大學碩士論文, 1998.
    27.Y. P. Zhuang, J. Y. Su and J. X. Zhu, “Numerical Simulation on Solidification Process of Horizontally Continuous Cast Round Iron Bars”, Chinese Journal of Mechanical Engineering, Vol. 12, pp. 204-210, 1999.
    28.A. Yamachi, “Heat Transfer Between Mold & Strand Through Mold Flux Film in Continuous Casting of Steel”, ISIJ International, Vol. 33, pp. 140-147, 1993.
    29.胡燕, “連鑄板坯凝固傳熱數學模型的研究與應用”, 重慶大學碩士論文, 2005.
    30.宮雪娜, “銅管水平連鑄過程的數值模擬研究”, 大連理工大學碩士論文, 2005.
    31.Andreas Deutsch and Sabine Dormann, “Cellular Automaton Modeling of Biological Pattern Formation”, Birkhauser, 2005.
    32.J. D. Hunt, “Steady State Columnar and Equaxied Growth of Dendrites and Eutectic”, Materials Science and Engineering, Vol. 65, pp. 75-83, 1984.
    33.Ph. Thevoz and M. Rappaz, “Modeling of Equiaxed Microstructure Formation in Casting”, Metall. Trans. A, Vol. 20A, pp. 311-321, 1989.
    34.J. Lipton, M. E. Glicksman and W. Kurz, “Equiaxed Dendrite Growth in Alloys at Small Supercooling”, Metall. Trans. A, Vol. 18A, pp. 341-345, 1987.
    35.J. S. Langer and H. M. Krumbnaar, “Stability Effects in Dendritic Crystal Growth”, Journal of Crystal Growth, Vol. 42, pp. 11-14, 1977.
    36.辛啟斌, ”材料成形計算機模擬”, 冶金工業出版社, 2006.
    37.J. Dantzig and M. Rappaz, “Solidificaiton”, EPFL Press, 2009.
    38.T. Y. Wang and C. P. Chen, “Thermal-ADI a Linear-Time Chip-Level Dynamic Thermal-Simulation Algorithm Based on Alternating Direction Implicit (ADI) Method”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 11, pp. 691-700, 2003.
    39.S. V. Patankar, “Numerical Heat Transfer and Fluid Flow”, Taylor & Francis, 1980.
    40.M. Makinen and M. Uoti, “Mould Temperature Fields During Continuous Casting of DHP-Copper”, Int. Conf. Continuous Casting of Non-Ferrous Metals, pp. 14-16, 2005.
    41.E. A. Mizikar, ”Spray Cooling Investigation for Continuous Casting of Billets and Blooms”, Iron and Steel Engineering, Vol. 47, pp. 53-60, 1970.
    42.胡漢起, ”金屬凝固原理”, 機械工業出版社, 2000.
    43.B. G. Thomas and J. K. Brimacombe, “Comparison of Numerical Modeling Techniques for Complex, Two-Dimensional, Transient Heat Conduction Problems”, Metall. Trans. B, Vol. 15B, pp. 307-318, 1984.
    44.鄭峰, ”銅與銅合金速查手冊”, 化學工業出版社, 2008.
    45.Y. T. Ding and G. G. Xu, ”Numerical Simulation of Solidification in Heated Mould Continuous Casting of Copper”, Foundry Technology, Vol. 26, pp. 554-558, 2005.
    46.Y. H. Chang and C. P. Hong, “Three Dimensional Simulation of Dendritic Grain Structures of Gas-Atomized Al-Cu Alloy Droplets”, ISIJ International, Vol. 38, pp. 63-70, 1998.
    47.Ch. A. Gandin, J. L. Desbiolles, M. Rappaz and Ph. Thevoz, “A Three-Dimensional Cellular Automaton-Finite Element Model for the Prediction of Solidification Grain Structures”, Metall. Trans. A, Vol. 30A, pp. 3153-3165, 1999.

    下載圖示 校內:立即公開
    校外:2017-01-03公開
    QR CODE