| 研究生: |
蘇良晟 Su, Liang-Cheng |
|---|---|
| 論文名稱: |
以快溶型微針經皮傳遞含藥微粒應用於皮膚疾病之治療 Transdermal delivery of drug-loaded particles using dissolvable microneedles for treatment of skin diseases |
| 指導教授: |
陳美瑾
Chen, Mei-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | PLGA奈米粒子 、快溶型微針 、PCL微米粒子 、控制釋放 、光動力治療 、癌症治療 |
| 外文關鍵詞: | PLGA nanoparticles, dissolvable microneedles, PCL microparticles, triggered release, photodynamic therapy, cancer treatment |
| 相關次數: | 點閱:103 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討以快溶型高分子微針經皮傳輸藥物微粒之可行性,及其應用於皮膚疾病治療之潛力。內容分為polyvinyl alcohol /polyvinyl pyrrolidone (PVA/PVP)微針經皮傳輸poly(D,L-lactide-co-glycolide) (PLGA)奈米粒子之傳遞效率的探討(第一部份),與玻尿酸微針傳輸結合化療、光熱及光動力治療之polycapro-lactone(PCL)微米粒子,應用於鱗狀細胞癌之治療效果(第二部份)。
在第一部份的研究中,以離心灌模的方式,製備出攜帶Coumarin 6-loaded PLGA奈米粒子之PVA/PVP微針,將粒子集中包覆於微針之前端的金字塔部位,由於PVA與PVP之高度親水性,微針能於穿刺皮膚後的3分鐘內完全溶解。由於支撐軸結構的設計,所開發之微針能克服穿刺時皮膚的凹陷變形,讓微針刺入較深的部位,因此能讓包覆於金字塔部位的PLGA奈米粒子進入大鼠皮膚中。相較於以市售的3MTM 微針,以poke and cream的方式被動傳輸PLGA奈米粒子,僅能讓粒子進入角質層中;以具支撐軸結構的PVA/PVP微針進行傳輸,可將90%的PLGA奈米粒子成功傳遞至表皮與真皮層中。從大鼠的活體穿刺實驗也可觀察到,進入皮膚的PLGA奈米粒子能滯留於穿刺處達5天以上,有機會達到持續釋放藥物於皮膚中的效果,將可應用於深層皮膚疾病之治療。
第二部份的研究則是以具有支撐軸結構的玻尿酸微針,攜帶包覆具光熱與光動力治療特性的光敏物質(IR 780)和化療藥阿黴素(doxoru-bicin;DOX)之PCL微米粒子,應用於鱗狀皮膚癌之治療。利用玻尿酸微針,將含藥微粒傳入皮膚腫瘤處,待微針溶解後,照射近紅外光以驅動治療。IR 780能吸收光能,產生光熱轉換效應,導致粒子升溫,當粒子溫度超過48˚C時,PCL熔化造成分子流動,即可釋出DOX,產生光熱、光動力及化療多重治療的效果。經由體外藥物釋放實驗證實,近紅外光照射可明顯且重覆地驅動DOX由PCL微粒中釋放。與人類鱗狀細胞癌細胞株A431共培養後發現,未照射近紅光的含藥PCL微粒不具有明顯的細胞毒性(細胞存活率達90%),但若照射近紅外光後,細胞存活率降至約10%,顯示照光後所觸發之光熱、光動力效應及DOX之釋放,確實能引起癌細胞死亡。將含有PCL微粒之玻尿酸微針應用於背部帶有鱗狀皮膚癌之ICR SCID小鼠,於第一天及第十四天分別照射近紅外光三分鐘,結果顯示,同時包覆IR 780及DOX的微粒能明顯地使腫瘤萎縮,並造成傷口結痂,持續觀察至24天,並無腫瘤復發的跡象。然而,僅包覆IR 780的微粒組,於治療初期雖可造成腫瘤萎縮,但後期仍有腫瘤仍有逐漸長大的趨勢。以上結果證實,藉由近紅外光之照射,包覆IR 780及DOX的PCL微粒能同時提供光熱、光動力及化療之效果,有效治療鱗狀皮膚癌。利用玻尿酸微針進行經皮傳輸,能讓微粒有效且均勻地分散於腫瘤各部位,有潛力應用於其他表淺性癌症之治療。
This study focuses on the feasibility of transdermal delivery of drug particles using dissolvable polymer microneedles and its potential for the treatment of skin diseases. Investigating the efficiency of transdermal delivery of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles using polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) microneedles is the first section. Transdermal delivery of doxorubicin (DOX) and IR 780-loaded polycaprolactone (PCL) microparticles using hyaluronic acid microneedles for treating A431 tumor by combination of chemotherapy, photodynamic and photothermal therapy is the second section.
The topic is efficient delivery of nanoparticles to deep skin layers using dissolvable microneedles with an extended-length design in the first section. Skin pretreatment with microneedles (MNs) increases drug permeation through the skin by creating microchannels in the skin. However, because of skin’s inherent elasticity and self-healing ability, these microchannels shrink or reseal rapidly, thus limiting the nanoparticle (NP) delivery efficiency. This study evaluated dissolvable PVA/PVP MNs with an extended-length design for the efficient transdermal delivery of NPs. In this system, PLGA NPs are encapsulated within the pyramidal structure of the MNs. The extended length of the PVA/PVP MN allows it to counteract skin indentation during insertion, thus enabling complete insertion of the pyramidal structure into the skin to deliver the NPs. In contrast to MN pretreatments that require passive diffusion of NPs through the skin, the extended PVA/PVP MNs can directly bring the NPs into the deeper skin layers, and then rapidly dissolve in 3 min to release the payload. An in vivo transdermal delivery study showed that approximately 90% of the loaded NPs were delivered to the viable epidermis and dermis, whereas only 2% of topically applied NPs were detected in the skin after being treated with a commercial MN product (3MTM Microchannel Skin System). The NPs delivered by the extended MN remained at the insertion site for 5 days, thus providing sustained drug release. The proposed MN system could be a promising tool for the transdermal delivery of NPs for treating deep skin diseases such as bacterial infection and malignant tumor.
The topic is delivery of IR 780 and DOX-loaded microparticles into skin cancer using hyaluronic acid microneedles with an extended-length design for treating squamous cell carcinoma in the second section. IR 780 is a near infrared (NIR) heptamethine indocyanine dye, it can exhibite remarkable photothermal effect and photodynamic therapy with NIR light. The NIR light-triggered release experiments demonstrated that PCL microparticles can quickly melt at 48˚C due to the heating of the encapsulated IR 780 when NIR irradiation and then release DOX into the medium. In vitro cell viability assays showed that IR 780 and DOX-loaded PCL microparticles significantly enhanced the cytotoxicity of combination therapy in A-431 cells. Dramatic size decreases in squamous cell carcinoma xenografts were observed for delivery of IR 780 and DOX-loaded PCL microparticles into skin tumor using dissolvable hyaluronic acid microneedles in ICR SCID mice. Compared with IR 780-loaded PCL microparticles, the combined treatment with chemotherapy, photodynamic and photothermal therapy possessed a better therapeutic efficacy, resulting from a DOX effect. In conclusion, we believe that delivery of DOX and IR 780-loaded microparticles into tumor using dissolvable microneedles are promising and may serve as a useful system for superficial cancer treatment.
1. Greene F. L., Balch C. M., Fleming I. D., Fritz A. G., Haller D. G. and Morrow M. and David L., AJCC cancer staging handbook: TNM classification of malignant tumors.
2. Liotta L. A., Tryggvason K., Garbisa S., Hart I., Foltz C.M. and Shafie S., Metastatic potential correlates with enzymatic degradation of basement membrane collagen, Nature 1980; 284, 67-68.
3. Kubota Y., Kleinman H. K., Martin G. R. and Lawley T. J., Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structure, J. Cell. Biol. 1988; 107, 1589- 1598.
4. Neal D. E., Marsh C., Bennett M. K., Abel P. D., Hall R. R., Sainsbury J. R. and Harris A. L., Epidermal-growth-factor receptors in human bladder cancer: comparison of invasive and superficial tumours, Lancet 1985, 325, 366-368.
5. Heney N. M. , Ahmed S., Flanagan M. J., Frable W., Co rder M. P., Hafermann M. D. and Hawkins I. R., Superficial bladder cancer: progression and recurrence, J. Urol. 1983, 130, 1083-1086.
6. Muto M., Minashi K., Yano T., Saito Y., Oda I., Nonaka S., Omori T., Sugiura H., Goda K., Kaise M., Inoue H., Ishikawa H., Ochiai A., Shimoda T., Watanabe H., Tajiri H. and Saito D., Early Detection of Superficial Squamous Cell Carcinoma in the Head and Neck Region and Esophagus by Narrow Band Imaging: A Multicenter Randomized Controlled, Trial. J. Clin. Oncol. 2010, 28, 1566-1572.
7. James H., Graham M. D., Elson B. and Helwig M. D., Bowen's Disease and Its Relationship to Systemic Cancer, AMA. Arch. Derm. 1959, 80, 133-159.
8. Cox N. H., Eedy D. J. and Morton C. A., Guidelines for management of Bowen's disease: 2006 update, Br. J. Dermatol. 2007,156, 11-21.
9. Gorsky M., Epstein J. B., Oakley C., Le N. D. and Hay J., Stevenson-Moore P. Carcinoma of the tongue: a case series analysis of clinical presentation, risk factors, staging, and outcome, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 98, 546-552.
10. Yuen A. P., Lam K. Y., Wei W. I., Lam K. Y., Ho C. M., Chow T. L. and Yuen W.F., A comparison of the prognostic significance of tumor diameter, length, width, thickness, area, volume, and clinicopathological features of oral tongue carcinoma, Am. J Surg. 2000,180, 139-143.
11. Schepman K. P. and van der Waal I., A proposal for a classification and staging system for oral leukoplakia: a preliminary study, Eur. J. Cancer B Oral Oncol. 1995, 31B, 396-398
12. Leslie A., Fyfe E., Guest P., Goddard P. and Kabala J. E., Staging of squamous cell carcinoma of the oral cavity and oropharynx: a comparison of MRI and CT in T- and N-staging, J. Comput. Assist. Tomogr. 1999, 23, 43-49.
13. Alam M. and Ratner D., Cutaneous squamous-cell carcinoma, N. Engl. J. Med. 2001, 344, 975-983.
14. Kwa R. E., Campana K. and Moy R. L., Biology of cutaneous squamous cell carcinoma, J. Am. Acad. Dermatol. 1992, 26, 1-26.
15. Brash D. E., Rudolph J. A., Simon J. A., Lin A., McKenna G. J., Baden H. P., Halperin A. J. and Pontén J., A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma, Proc. Natl. Acad. Sci. U S A 1991, 88, 10124-10128.
16. Aubry F. and MacGibbon B., Risk factors of squamous cell carcinoma of the skin. A case-control study in the Montreal region, Cancer 1985, 55, 907-911.
17. Squamous Cell Carcinoma, website:
http://medicalterms.info/diseases/Squamous-Cell-Carcinoma/ and http://dermatologyandmohs.com/squamous-cell-carcinoma/
18. Funk G. F., Karnell L. H., Robinson R.A., Zhen W. K., Trask D. K. and Hoffman H. T., Presentation, treatment, and outcome of oral cavity cancer: a National Cancer Data Base report, Head & Neck 2002, 24, 165-180.
19. Montero P. H. and Patel S.G., Cancer of the oral cavity, Surg. Oncol. Clin. N. Am. 2015, 24, 491-508.
20. Elwood J. M., Pearson J. C., Skippen D. H. and Jackson S. M., Alcohol, smoking, social and occupational factors in the aetiology of cancer of the oral cavity, pharynx and larynx, Int. J. Cancer 1984, 34, 603-612.
21. Lin Y. S., Jen Y. M., Wang B. B., Lee J. C., Kang B. H., Epidemiology of oral cavity cancer in taiwan with emphasis on the role of betel nut chewing, ORL J. Otorhinolaryngol. Relat. Spec. 2005, 67, 230-236.
22. Oral cancer, website:
http://www.storm.mg/localarticle/235690 and
https://www.researchgate.net/figure/Clinical-Stage-I-T1N0M0-squamous-cell-carcinoma-of-the-tongue_fig12_304113366
23. Malhotra V. and Perry M. C., Classical chemotherapy: mechanisms, toxicities and the therapeutic window, Cancer Biol. Ther. 2003, 2, S2-S4.
24. Callahan M. K. and Wolchok J. D., At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy, J. Leukoc. Biol. 2013, 94, 41-53.
25. Restifo N. P., Dudley M. E. and Rosenberg S. A., Adoptive immunotherapy for cancer: harnessing the T cell response, Nat. Rev. Immunol. 2012, 12, 269-281.
26. Dolmans D. E., Fukumura D. and Jain R. K., Photodynamic therapy for cancer, Nat. Rev. Cancer 2003, 3, 380-387.
27. Agostinis P., Berg K., Cengel K. A., Foster T. H., Girotti A. W., Gollnick S. O., Hahn S. M., Hamblin M. R., Juzeniene A., Kessel D., Korbelik M., Moan J., Mroz P., Nowis D., Piette J., Wilson B. C. and Golab J., Photodynamic therapy of cancer: an update, CA Cancer J. Clin. 2011, 61, 250-281.
28. Sharman W. M., Allen C. M. and van Lier J. E., Photodynamic therapeutics: basic principles and clinical applications, Drug Discov. Today 1999, 4, 507-517.
29. Silva Z. S. Jr., Bussadori S. K., Fernandes K. P., Huang Y. Y. and Hamblin M. R, Animal models for photodynamic therapy (PDT), Biosci. Rep. 2015, 35.
30. Castano A. P., Demidova T. N. and Hamblin M. R., Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization, Photodiagnosis Photodyn. Ther. 2004, 1, 279-293.
31. Mroz P., Yaroslavsky A., Kharkwal G. B. and Hamblin M. R., Cell death pathways in photodynamic therapy of cancer, Cancers (Basel). 2011, 3, 2516-2539.
32. Robertson C. A., Evans D. H. and Abrahamse H., Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT, J. Photochem. Photobiol. B 2009, 96, 1-8.
33. Abrahamse H., Kruger C. A., Kadanyo S. and Mishra A., Nanoparticles for Advanced Photodynamic Therapy of Cancer, Photomed. Laser Surg. 2017, 35, 581-588.
34. Laser Light Reprograms Immunity, website: http://photoimmune.org/light-reprograms-immunity/#imageclose-3838
35. Lucky S. S., Soo K. C. and Zhang Y., Nanoparticles in photodynamic therapy, Chem. Rev. 2015,115, 1990-2042.
36. Abrahamse H. and Hamblin M. R., New photosensitizers for photodynamic therapy, Biochem. J. 2016, 473, 347-364.
37. Ormond A. B. and Freeman H. S., Dye Sensitizers for Photodynamic Therapy, Materials (Basel). 2013, 6, 817-840.
38. Zhang C., Liu T., Su Y., Luo S., Zhu Y., Tan X., Fan S., Zhang L., Zhou Y., Cheng T. and Shi C., A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging, Biomaterials 2010, 31, 6612-6617.
39. Zhang E., Luo S., Tan X. and Shi C., Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent, Biomaterials 2014; 35, 771-778.
40. Yi X., Yan F., Wang F., Qin W., Wu G., Yang X., Shao C., Chung L. W. and Yuan J., IR-780 dye for near-infrared fluorescence imaging in prostate cancer, Med. Sci. Monit. 2015, 21, 511-517.
41. Peng C. L., Shih Y. H., Lee P. C., Hsieh T. M., Luo T. Y. and Shieh M. J., Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano. 2011, 5, 5594-5607.
42. Yue C., Liu P., Zheng M., Zhao P., Wang Y., Ma Y. and Cai L., IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy, Biomaterials 2013, 34, 6853-6861.
43. Yuan A., Qiu X., Tang X., Liu W., Wu J. and Hu Y., Self-assembled PEG-IR-780-C13 micelle as a targeting, safe and highly-effective photothermal agent for in vivo imaging and cancer therapy, Biomaterials 2015, 51, 184-193.
44. Chen Y., Li Z., Wang H., Wang Y., Han H., Jin Q. and Ji J., IR-780 Loaded Phospholipid Mimicking Homopolymeric Micelles for Near-IR Imaging and Photothermal Therapy of Pancreatic Cancer, ACS Appl.Mater.Interfaces 2016, 8, 6852-6858.
45. Kuang Y., Zhang K., Cao Y., Chen X., Wang K., Liu M. and Pei R., Hydrophobic IR-780 Dye Encapsulated in cRGD-Conjugated Solid Lipid Nanoparticles for NIR Imaging-Guided Photothermal Therapy, ACS Appl. Mater. Interfaces. 2017, 9, 12217-12226.
46. He B., Hu H. Y., Tan T., Wang H., Sun K. X., Li Y. P. and Zhang Z. W., IR-780-loaded polymeric micelles enhance the efficacy of photothermal therapy in treating breast cancer lymphatic metastasis in mice, Acta Pharmacol. Sin. 2018, 39, 132-139.
47. Jiang C., Cheng H., Yuan A., Tang X., Wu J. and Hu Y., Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy, Acta Biomater. 2015, 14, 61-69.
48. Wang K., Zhang Y., Wang J., Yuan A., Sun M., Wu J. and Hu Y., Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy, Sci. Rep. 2016, 6, 27421.
49. Trommer H. and Neubert R. H., Overcoming the stratum corneum: the modulation of skin penetration. A review, Skin Pharmacol. Physiol. 2006, 19, 106-121.
50. Karande P. and Mitragotri S., Enhancement of transdermal drug delivery via synergistic action of chemicals, Biochim. Biophys. Acta. 2009, 1788, 2362-2373.
51. Parhi R., Suresh P. and Patnaik S., Physical means of stratum corneum barrier manipulation to enhance transdermal drug delivery, Curr. Drug Deliv. 2015, 12, 122-38.
52. Prausnitz M. R., Microneedles for transdermal drug delivery, Adv. Drug. Deliv. Rev. 2004, 56, 581-587.
53. van der Maaden K., Jiskoot W. and Bouwstra J., Microneedle technologies for (trans)dermal drug and vaccine delivery, J. Control Release 2012, 161, 645-655.
54. Tuan-Mahmood T. M., McCrudden M. T., Torrisi B. M., McAlister E., Garland M. J., Singh T. R. and Donnelly R. F., Microneedles for intradermal and transdermal drug delivery, Eur. J. Pharm. Sci. 2013, 50, 623-637.
55. Donnelly R. F., Morrow D. I., McCarron P. A., Woolfson A. D., Morrissey A., Juzenas P., Juzeniene A., Iani V., McCarthy H. O. and Moan J., Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: potential for enhanced topical photodynamic therapy, J. Control Release 2008, 129, 154-162.
56. Mikolajewska P., Donnelly R. F., Garland M. J., Morrow D. I., Singh T. R., Iani V., Moan J. and Juzeniene A., Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)- and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX production for topical photodynamic therapy without increase in pain or erythema, Pharm. Res. 2010, 27, 2213-2220.
57. Jain A. K., Lee C. H., Gill H. S., 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors, J. Control Release 2016, 239, 72-81.
58. Sy J. C., Seshadri G., Yang S. C., Brown M., Oh T., Dikalov S., Murthy N. and Davis M. E. Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction, Nat. Mater. 2008, 7, 863-868.
59. Choleris E., Little S. R., Mong J. A., Puram S.V., Langer R. and Pfaff D. W. Microparticle-based delivery of oxytocin receptor antisense DNA in the medial amygdala blocks social recognition in female mice, Proc. Natl. Acad. Sci. USA 2007, 104, 4670-4675.
60. Kohane D. S., Holmes G. L., Chau Y., Zurakowski D., Langer R. and Cha B. H., Effectiveness of Muscimol-containing Microparticles against Pilocarpine -induced Focal Seizures, Epilepsia 2002, 43, 1462-1468.
61. Ciolino J. B., Hoare T. R., Iwata N. G., Behlau I., Dohlman C. H., Langer R. and Kohane D. S., A Drug-Eluting Contact Lens, Invest. Ophthalmol. Vis. Sci. 2009, 50, 3346-3352.
62. Kohane D. S., Tse J. Y., Yeo Y., Padera R., Shubina M. and Langer R., Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum, J. Biomed. Mater. Res. A 2006, 77, 351-361.
63. Yeo Y. and Kohane D.S., Polymers in the prevention of peritoneal adhesions, Eur. J. Pharm. Biopharm. 2008, 68, 57-66.
64. Cho K., Wang X., Nie S., Chen Z. G. and Shin D. M., Therapeutic nanoparticles for drug delivery in cancer, Clin. Cancer Res. 2008, 14, 1310-1316.
65. Malam Y., Loizidou M. and Seifalian A. M., Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer, Trends Pharmacol. Sci. 2009 ,30, 592-599.
66. MacEwan S. R., Callahan D. J. and Chilkoti A., Stimulus-responsive macro- molecules and nanoparticles for cancer drug delivery, Nanomedicine (Lond). 2010, 5, 793-806.
67. Ruvinov E., Leor J. and Cohen S., The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model, Biomaterials 2010, 31, 4573-4582.
68. Edelman E. R., Brown L. and Langer R. Quantification of insulin release from implantable polymer-based delivery systems and augmentation of therapeutic effect with simultaneous release of somatostatin, J. Pharm. Sci. 1996, 85, 1271-1275.
69. Castillo J., Curley J., Hotz J., Uezono M., Tigner J., Chasin M., Wilder R., Langer R. and Berde C., Glucocorticoids prolong rat sciatic nerve blockade in vivo from bupivacaine microspheres, Anesthesiology 1996, 85,1157-1166.
70. Damgé C., Maincent P. and Ubrich N., Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats, J. Control Release 2007, 117, 163-170.
71. Chen M. C., Sonaje K., Chen K. J. and Sung H. W., A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery, Biomaterials 2011, 2, 9826-9838.
72. Kohane D. S., Smith S. E., Louis D. N., Colombo G., Ghoroghchain P., Hunfeld N. G. M., Berde C. B., and Langer R. S., Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres, Pain 2003, 104, 415-421.
73. Epstein-Barash H., Shichor I., Kwon A. H., Hall S., Lawlor M. W., Langer R. and Kohane D. S., Prolonged duration local anesthesia with minimal toxicity, Proc. Natl. Acad. Sci. USA 2009, 106, 7125-7130.
74. Timko B. P., Dvir T. and Kohane D. S., Remotely Triggerable Drug Delivery Systems, Adv. Mater. 2010, 22, 4925-4934.
75. Mamada A.,Tanaka T., Kungwatchakun D. and Irie M., Photoinduced phase transition of gels, Macromolecules 1990, 23, 1517-1519.
76. Suzuki A. and Tanaka T., Phase transition in polymer gels induced by visible light, Nature 1990, 346, 345-347.
77. Ntziachristos V., Ripoll J., Wang L. V. and Weissleder R., Looking and listening to light: the evolution of whole-body photonic imaging, Nat. Biotechnol. 2005, 23, 313-320.
78. Weissleder R., A clearer vision for in vivo imaging, Nat. Biotechnol. 2001, 19, 316-317.
79. Simpson C. R., Kohl M., Essenpreis M. and Cope M., Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique, Phys. Med. Biol., 1998, 43, 2465-2478.
80. Roggan A., Friebel M., Do Rschel K., Hahn A. and Mu Ller G., Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm, J. Biomed. Opt. 1999, 4, 36-46.
81. Meinke M., Müller G., Helfmann J. and Friebel M., Empirical model functions to calculate hematocrit-dependent optical properties of human blood, Appl. Opt. 2007, 46, 1742.
82. Matsumura Y. and Maeda H., A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387-6392.
83. Ngoune R., Peters A., von Elverfeldt D., Winkler K. and Pütz G., Accumulating nanoparticles by EPR: A route of no return, J. Control Release 2016, 238, 58-70.
84. Maeda H., Tsukigawa K. and Fang J., A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy-Problems, Solutions, and Prospects, Microcirculation 2016, 23, 173-182.
85. Fomina N., Sankaranarayanan J. and Almutairi A., Photochemical mechanisms of light-triggered release from nanocarriers, Adv. Drug Deliv. Rev. 2012 , 64, 1005-1020.
86. Liu G. Y., Chen C. J., Li D. D., Wanga S. S. and Ji J., Near-infrared light-sensitive micelles for enhanced intracellular drug delivery, J. Mater. Chem., 2012, 22, 16865-16871.
87. Cao J., Huang S., Chen Y., Li S., Li X., Deng D., Qian Z., Tang L. and Gu Y., Near-infrared light-triggered micelles for fast controlled drug release in deep tissue, Biomaterials 2013, 34, 6272-6283.
88. Yan B., Boyer J. C., Habault D., Branda N. R. and Zhao Y., Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles, J. Am. Chem. Soc. 2012 , 134, 16558-16561.
89. Liu J., Bu W., Pan L. and Shi J, NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica, Angew Chem. Int. Ed. Engl. 2013, 52, 4375-4379.
90. Zhong Y., Wang C., Cheng L., Meng F., Zhong Z. and Liu Z., Gold nanorod-cored biodegradable micelles as a robust and remotely controllable doxorubicin release system for potent inhibition of drug-sensitive and -resistant cancer cells, Biomacromolecules 2013, 14, 2411-2419.
91. Qin Y., Chen J., Bi Y., Xu X., Zhou H., Gao J., Hu Y., Zhao Y. and Chai Z., Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle, Acta Biomater. 2015, 17, 201-209.
92. Tang Y., Hu H., Zhang M. G., Song J., Nie L., Wang S., Niu G., Huang P., Lu G. and Chen X., An aptamer-targeting photoresponsive drug delivery system using "off-on" graphene oxide wrapped mesoporous silica nanoparticles, Nanoscale. 2015, 7, 6304-6310.
93. Yu L., Dong A., Guo R.,Yang M., Deng L., Zhang J., DOX/ICG Coencapsulated Liposome-Coated Thermosensitive Nanogels for NIR- Triggered Simultaneous Drug Release and Photothermal Effect, ACS Biomater. Sci. Eng. 2018, 4, 2424-2434.
94. Prasad P. N., Polymer science and technology for new generation photonics and biophotonics, Curr. Opin. Solid State Mater. Sci. 2004, 8, 11-19.
95. Allison R. R., Mota H. C., Bagnato V. S. and Sibata C. H., Bio-nanotechnology and photodynamic therapy--state of the art review, Photodiagnosis Photodyn. Ther. 2008, 5, 19-28.
96. Chatterjee D. K., Fong L. S. and Zhang Y., Nanoparticles in photodynamic therapy: an emerging paradigm, Adv. Drug Deliv Rev. 2008, 60, 1627-1637.
97. Bechet D., Couleaud P., Frochot C., Viriot M. L. and Guillemin F., Barberi-Heyob M, Nanoparticles as vehicles for delivery of photodynamic therapy agents, Trends Biotechnol. 2008, 26, 612-621.
98. Alvarez-Román R., Naik A., Kalia Y. N., Guy R. H. and Fessi H., Enhancement of topical delivery from biodegradable nanoparticles, Pharm Res. 2004, 21, 1818-1825.
99. Alvarez-Román R., Naik A., Kalia Y. N., Guy R. H. and Fessi H., Skin penetration and distribution of polymeric nanoparticles, J. Control Release 2004, 99, 53-62.
100. Zhang W., Gao J., Zhu Q., Zhang M., Ding X., Wang X., Hou X., Fan W., Ding B., Wu X., Wang X. and Gao S., Penetration and distribution of PLGA nanoparticles in the human skin treated with microneedles, Int. J. Pharm. 2010, 402, 205-212.
101. Donnelly R. F., Morrow D. I., Fay F., Scott C. J., Abdelghany S., Singh R. R., Garland M. J. and Woolfson A. D., Microneedle-mediated intradermal nanoparticle delivery: Potential for enhanced local administration of hydrophobic pre-formed photosensitisers, Photodiagnosis Photodyn. Ther. 2010, 7, 222-231.
102. Wang X., Shi L., Tu Q., Wang H., Zhang H., Wang P., Zhang L., Huang Z., Zhao F., Luan H. and Wang X., Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle -mediated photodynamic therapy in a mouse model, Int. J. Nanomedicine 2015, 10, 347-355.
103. Ma Y., Boese S. E., Luo Z., Nitin N. and Gill H. S., Drug coated microneedles for minimally-invasive treatment of oral carcinomas: development and in vitro evaluation, Biomed Microdevices. 2015, 44.
104. Wang C., Ye Y., Hochu G. M., Sadeghifar H. and Gu Z., Enhanced Cancer Immunotherapy by Microneedle Patch-Assisted Delivery of Anti-PD1 Antibody, Nano Lett. 2016, 16, 2334-2340.
105. Bhowmik T., D'Souza B., Shashidharamurthy R., Oettinger C., Selvaraj P. and D'Souza M. J., A novel microparticulate vaccine for melanoma cancer using transdermal delivery, J. Microencapsul. 2011, 28, 294-300.
106. Sahoo S. K., Panyam J., Prabha S. and Labhasetwar V., Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake, J. Control. Release 2002, 82, 105-114.
107. Raikar U. S., Renuka C. G., Nadaf Y. F., Mulimani B. G., Karguppikar A. M. and Soudagar M. K., Solvent effects on the absorption and fluorescence spectra of coumarins 6 and 7 molecules: determination of ground and excited state dipole moment, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006, 65, 673-677.
108. Raikar U. S., Renuka C. G. and Nadaf Y. F., Mulimani BG, Karguppikar AM, Rotational diffusion and solvatochromic correlation of coumarin 6 laser dye, J Fluoresc. 2006, 16, 847-854.
109. Duan D., Moeckly C., Gysbers J., Novak C., Prochnow G., Siebenaler K., Albers L. and Hansen K., Enhanced delivery of topically-applied formulations following skin pre-treatment with a hand-applied, plastic microneedle array, Curr. Drug Deliv., 8, 557-565.
110. Dickel H., Goulioumis A., Gambichler T., Fluhr J. W., Kamphowe J., Altmeyer P. and Kuss O., Standardized tape stripping: a practical and reproducible protocol to uniformly reduce the stratum corneum, Skin Pharmacol. Physiol. 2010, 23, 259-265.
111. Chen Y. C., Liu D. Z., Liu J. J., Chang T. W., Ho H. O. and Sheu M. T., Development of terbinafine solid lipid nanoparticles as a topical delivery system, Int. J. Nanomedicine 2012,7, 4409-4418.
112. Shakeel F., Baboota S., Ahuja A., Ali J. and Shafiq S. J., Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion, J. Nanobiotechnol., 2008, 6, 8.
113. Vashistha I., Ahadb A., Aqila M. and Agarwal S.P., Investigating the potential of essential oils as penetration enhancer for transdermal losartan delivery: Effectiveness and mechanism of action, AJPS, 2014, 9, 260-267.
114. Gupta J., Gill H. S., Andrews S. N. and Prausnitz M. R., Kinetics of skin resealing after insertion of microneedles in human subjects, J. Control Release 2011, 154, 148-55.
115. Kelchen M. N., Siefers K. J., Converse C. C., Farley M. J., Holdren G. O. and Brogden N. K., Micropore closure kinetics are delayed following microneedle insertion in elderly subjects, J. Control Release 2016,10, 225, 294-300.
116. Huang X., Zhang F., Zhu L., Choi K. Y., Guo N., Guo J., Tackett K., Anilkumar P., Liu G., Quan Q., Choi H. S., Niu G., Sun Y. P., Lee S. and Chen X., Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots, ACS Nano., 2013, 7, 5684-5693.
117. Li M., Al-Jamal K. T., Kostarelos K. and Reineke J., Physiologically based pharmacokinetic modeling of nanoparticles, ACS Nano., 2010, 4, 6303-6317.
118. Nishioka Y. and Yoshino H., Lymphatic targeting with nanoparticulate system, Adv. Drug Deliv. Rev., 2001, 47, 55-64.
119. Kim J., Lee J. E., Lee S. H., Yu J. H., Lee J. H., Park T. G. and Hyeon T., Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery, Adv. Mater., 2008, 20, 478-483.
120. Lo C. L., Lin S. J., Tsai H. C., Chan W. H., Tsai C.H., Cheng C. H. and Hsiue G. H., Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery, Biomaterials, 2009, 30, 3961-3970.
121. Hrubý M., Konák C. and Ulbrich K., Polymeric micellar pH-sensitive drug delivery system for doxorubicin, J. Control Release 2005, 103, 137-148.
122. Suriano F., Pratt R., Tan J. P., Wiradharma N., Nelson A., Yang Y. Y., Dubois P. and Hedrick J. L., Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery, Biomaterials 2010, 31, 2637-2645.
123. Jiang C., Cheng H., Yuan A., Tang X., Wu J. and Hu Y., Hydrophobic IR780 Encapsulated in Biodegradable Human Serum Albumin Nanoparticles for Photothermal and Photodynamic Therapy. Acta Biomater. 2015, 14, 61-69.
124. Yan F., Duan W., Li Y., Wu H., Zhou Y., Pan M., Liu H., Liu X. and Zheng H., NIR-Laser-Controlled Drug Release from DOX/IR-780-Loaded Temperature-Sensitive-Liposomes for Chemo-Photothermal Synergistic Tumor Therapy, Theranostics. 2016, 6, 2337-2351.
125. Zhang Z., Wang L., Wang J., Jiang X., Li X., Hu Z., Ji Y., Wu X. and Chen C., Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment, Adv. Mater., 2012, 24, 1418-1423.
126. Shen H., You J., Zhang G., Ziemys A., Li Q., Bai L., Deng X., Erm D. R., Liu X., Li C. and Ferrari M., Cooperative, nanoparticle-enabled thermal therapy of breast cancer, Adv. Healthc. Mater., 2012,1, 84-89.
127. Yin W., Yan L., Yu J., Tian G., Zhou L., Zheng X., Zhang X., Yong Y., Li J., Gu Z. and Zhao Y., High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy, ACS Nano., 2014, 8, 6922-6933.
128. Lee S. M., Park H. and Yoo K. H., Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles, Adv. Mater., 2010, 22, 4049-4053.
129. Hainfeld J. F., O'Connor M. J., Lin P., Qian L., Slatkin D. N. and Smilowitz H. M., Infrared-transparent gold nanoparticles converted by tumors to infrared absorbers cure tumors in mice by photothermal therapy, PLoS One 2014, 9, e88414.
130. Tomayko M. M., Reynolds C. P., Determination of subcutaneous tumor size in athymic (nude) mice, Cancer Chemother. Pharmacol., 1989, 24, 148-154.
131. Ibraheem M. D., Iqbal M., Agusti G., FessiA H. and Elaissari A., Effects of process parameters on the colloidal properties of polycaprolactone microparticles prepared by double emulsion like process, Colloids Surf. A Ph ysicochem. Eng. Asp. 2014, 445, 79-91.
132. Bihari P., Vippola M., Schultes S., Praetner M., Khandoga A. G., Reichel C. A., Coester C., Tuomi T., Rehberg M. and Krombach F., Optimized dispersion of nanoparticles for biological in vitro and in vivo studies, Part. Fibre. Toxicol. 2008, 5:14.
133. Larsson M., Hill A. and Dufy J., Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important, Annu. Trans. Nord. Rheol. Soc. 2012, 20, 209-214.
134. Melancon M. P., Elliott A. M., Shetty A., Huang Q., Stafford R. J. and Li C., Near-infrared light modulated photothermal effect increases vascular perfusion and enhances polymeric drug delivery, J. Control Release. 2011, 156, 265-272.
135. Melancon M. P., Elliott A., Ji X., Shetty A., Yang Z., Tian M., Taylor B., Stafford R. J. and Li C., Theranostics with multifunctional magnetic gold nanoshells: photothermal therapy and t2* magnetic resonance imaging, Invest. Radiol., 2011, 46, 132-140.