簡易檢索 / 詳目顯示

研究生: 彭翰祺
Peng, Han-Chi
論文名稱: 以表面增強拉曼散射方法即時監測聚3,4-乙烯二氧噻吩及其衍伸物於緩衝溶液中之氧化還原行為
In situ Monitoring the Redox Behavior of 3,4-Ethylenedioxythiophene and Its Derivatives in buffer by Electrochemical Surface-Enhanced Raman Scattering
指導教授: 羅世強
Luo, Shyh-Chyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 90
中文關鍵詞: PEDOTSERS表面增強拉曼過氧化即時監測降解電化學導電高分子
外文關鍵詞: PEDOT, SERS, degradation, over-oxide, in-situ, electrochemical
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • poly(3,4-ethylenedioxythiophene) (PEDOT)為近年來新興之導電高分子材料之一,其應用領域相當廣泛,亦包括在不同的介質中使用,而從前人的研究已發現其過氧化之降解行為將導致其喪失導電特性,故其在不同環境下之穩定性與其應用環境之限制息息相關。
    而本論文以電化學方式製備金奈米顆粒薄膜以達到表面增強拉曼之效果,以增強其在液體中的拉曼訊號以達到即時監測的效果,觀察PEDOT在不同酸鹼值緩衝溶液下之穩定性,同時也探討PEDOT在不同微結構奈米金上之表面增強效果。
    實驗結果顯示電化學製備之金奈米基板依微結構晶粒及間距不同,其拉曼增強效果也不相同,和圈數呈正相關,在本研究中以循環伏安法300圈之金奈米基板為最佳,有最高4.4×107之增強因子。拉曼光譜監測以循環伏安法對PEDOT進行電化學氧化還原現象,其結果顯示隨著不同電位下PEDOT的鍵結狀態將會改變,而使得拉曼訊號峰值隨著電位上升與下降。而在電化學高氧化電位狀態下,PEDOT產生較高濃度的摻雜狀態,吸引大量陰離子,而對雙鍵產生強大吸引力造成過氧化狀態,使得其結構遭到破壞,其拉曼訊號也跟著降低。而不同微結構之PEDOT在不同酸鹼值環境下所展現之降解行為也不相同。

    In this study, we investigated the electrochemical stability of the poly(3,4-ethylenedioxythiophene) (PEDOT) polymer material in the liquid phase with different pH value. The degradation of PEDOT was mainly caused by the over-oxidation of the double-bonds strongly attracting by the anions. For the strong enough signal and shorter integration time of Raman spectrum to achieve in-situ monitoring, Surface-Enhanced Raman Spectroscopy (SERS) method was used. The SERS-active substrate was gold nanoparticles film prepared by chronocoulometry and then cyclic voltammetry in HAuCl¬4 solution. The cyclic voltammetry and chrono amperometry methods was used for the investigation of the redox reaction and degradation behavior of the PEDOT. Furthermore, the degradation of different microstructures of PEDOT were also studied.

    As the result, the SERS effect of gold nanoparticles film was increased with the increasing cycles of the cyclic voltammetry but had limitation after about 300 cycles and then the effect decreased. The redox reaction of PEDOT caused by the different electrical potential lead to the change of the Raman spectrum. As a result, the Raman signal of PEDOT increased with increasing negative potential and then decreased when it returned to positive. In the stability respect, also the nano and smooth phase PEDOT exhibit very fast decreasing signal in the extreme acidic and basic environment( pH 1 and pH 11) but exhibit different behavior in the range of pH 3 to pH 9.

    摘要 ................ I Abstract ............... II 誌謝 ................ XI 目錄 ................ XIII 表目錄 ............... XV 圖目錄 ................ XVI 第一章 緒論 ............... 1 1.1 前言 ............... 1 1.2 研究動機與目的 ............. 2 第二章 文獻回顧與理論基礎 ........... 3 2.1 SERS 文獻回顧與理論基礎 .......... 3 2.1.1 表面增強拉曼光譜(SERS)之發展與簡述 ....... 3 2.1.2 拉曼光譜之原理 ........... 5 2.1.3 SERS 之作用機制 ............ 14 2.2 導電高分子介紹與文獻回顧 ........... 25 2.2.1 導電高分子之簡介、發展與應用 ......... 25 2.2.2 導電高分子原理 ........... 30 2.2.3 PEDOT 氧化還原行為之研究回顧 ........ 39 第三章 實驗材料與方法 ............. 41 3.1 實驗儀器 ............. 41 3.2 實驗材料與藥品 ............. 43 3.3 實驗方法 ............. 44 3.3.1 SERS 金基板之製備 ............ 44 3.3.2 SERS 效果之檢測 ............ 44 3.3.3 PEDOT 電化學鍍膜 ............ 45 3.3.4 buffer 溶液之準備 ........... 45 XIV 3.3.5 In-situ monitoring 之實驗設計 ......... 46 第四章 實驗結果與討論 ............. 47 4.1 SERS 金基板之微結構與其增強效應 ........ 47 4.1.1 不同表面形貌之奈米金基板 ......... 47 4.1.2 p-MBA 在SERS 金基板上之訊號增強 ........ 50 4.1.3 SERS 增強因子(Enhancement Factor)之計算 ...... 52 4.2 不同微結構之PEDOT 及SERS 訊號行為之差異 ....... 54 4.2.1 奈米與平面相PEDOT 於奈米金上之微結構差異 ..... 54 4.2.2 不同微結構PEDOT 之SERS 訊號行為之探討 ....... 60 4.3 PEDOT 於不同緩衝溶液與酸鹼度下施加電壓之裂解行為 ...... 67 4.3.1 PEDOT 於電解質溶液中施加電壓之影響 ........ 67 4.3.2 PEDOT 於不同溶液中之氧化裂解行為之即時監測 ...... 70 第五章 結論 ............... 83 第六章 參考文獻 ............. 85

    1. Das, T.K. and S. Prusty, Review on Conducting Polymers and Their Applications. Polymer-Plastics Technology and Engineering, 2012. 51(14): p. 1487-1500.
    2. Tehrani, P., et al., The effect of pH on the electrochemical over-oxidation in PEDOT:PSS films. Solid State Ionics, 2007. 177(39–40): p. 3521-3527.
    3. Sur, U.K. and J. Chowdhury, Surface-enhanced Raman scattering: overview of a versatile technique used in electrochemistry and nanoscience. Current Science (00113891), 2013. 105(7): p. 923-939.
    4. Tian, Z.Q., Ren, B. and Wu, D. Y., , Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. . J. Phys. Chem. B, 106, 9463–9483., 2002.
    5. Tian, Z.Q., Ren, B., Li, J. F. and Yang, Z. L., , Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. . Chem. Commun., 2007, 34, 3514–3534.
    6. Tian, Z.Q.a.R., B., , Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem., 2004, 55, 197–229.
    7. Wu, D.Y., Ren, B., Jiang, Y. X., Xu, X. and Tian, Z. Q., , Density functional study and normal-mode analysis of the bindings and vibrational frequency shifts of the pyridine-M (M = Cu, Ag, Au, Cu+, Ag+, Au+, and Pt) complexes. J. Phys. Chem. A, 2002, 106, 9042–9052.
    8. Jiang, Y.X.e.a., Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surfaceenhanced Raman spectroscopy. . Chem. Commun., 2007, 44, 4608–4610.
    9. Gao, P., Gosztola, D. and Weaver, M. J.,, Surface-enhanced Raman spectroscopy as a probe of electroorganic reaction pathways. Processes involving adsorbed nitrobenzene, azobenzene, and related species. . J. Phys. Chem., 1988, 92, 7122–7130.
    10. Wang, A.e.a., In situ identification of intermediates of benzylchloride reduction at a silver electrode by SERS coupled with DFT calculations. . J. Am. Chem. Soc., 2010, 13, 9534–9536.
    11. Orendorff, C.J., Gole, A., Sau, T. K. and Murphy, C. J., , Surface enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. . Anal. Chem., 2005, 77, 3261-3266.
    12. Hu, J.-Q., Chen, Q., Xie, Z.-X., Han, G.-B., Wang, R.-H. and Ren,B., , A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. . Adv. Funct. Mater., 2004, 14, 183–189.
    13. Fan, F.-R.e.a., An effective strategy for room-temperature synthesis of single-crystalline palladium nanocubes and nanodendrites in aqueous solution. . Cryst. Growth Des., 2009, 9, 2335–2340.
    14. Pande, S., Chowdhury, J. and Pal, T., , Understanding the enhancement mechanisms in the surface-enhanced Raman spectra of the 1,10-phenanthroline molecule adsorbed on a Au@Ag bimetallic nanocolloid. . J. Phys. Chem. C., 2011, 115, 10497–10509.
    15. Pradhan, M., Chowdhury, J., Sarkar, S., Sinha, A. K. and Pal, T.,, Hierarchical gold flower with sharp tips from controlled galvanic replacement reaction for high surface enhanced Raman scattering activity. . J. Phys. Chem. C, 2012, 116, 24301–24313.
    16. Chen, T.e.a., Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints. . ACS Nano, 2010, 4, 3087–3094.
    17. Kim, K.K., K. L.; Shin, K. S. Selective Detection of Aqueous Nitrite Ions by Surface-Enhanced Raman Scattering of 4-Aminobenzenethiol on Au. Analyst 2012, 137, 3836−3840.
    18. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
    19. McFarland, A.D.Y., M. A.; Dieringer, J. A.; Van Duyne, R.P. , Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy. J. Phys. Chem. B 2005, 109, 11279−11285.
    20. Zhang, X.S., N. C.; Van Duyne, R. P. , Sensitive and Selective Chem/Bio Sensing Based on Surface-Enhanced Raman Spectroscopy (SERS). . Vib. Spectrosc. 2006, 42, 2−8.
    21. Haynes, C.L.M., A. D.; Duyne, R. P. V. , Surface- Enhanced Raman Spectroscopy. . Anal. Chem. 2005, 77, 338 A−346 A.
    22. Félidj, N.A., J.; Lévi, G.; Krenn, J. R.; Salerno, M.; Schider, G.; Lamprecht, B.; Leitner, A.; , Aussenegg, F. R. Controlling the Optical Response of Regular Arrays of Gold Particles for Surface- Enhanced Raman Scattering. . Phys. Rev. B 2002, 65, 075419.
    23. Ditlbacher, H.F., N.; Krenn, J. R.; Lamprecht, B.; Leitner, A.; Aussenegg, F. R. , Electromagnetic Interaction of Fluorophores with Designed Two-Dimensional Silver Nanoparticle arrays. Appl. Phys.: B: Lasers Opt. 2001, 73, 373−377.
    24. Zhai, W.-L.L., D.-W.; Qu, L.-L.; Fossey, J. S.; Long, Y.-T., Multiple Depositions of Ag Nanoparticles on Chemically Modified Agarose Films for Surface-Enhanced Raman Spectroscopy. . Nanoscale 2012, 4, 137−142.
    25. He, P.L., H.; Li, Z.; Liu, Y.; Xu, X.; Li, J. , Electrochemical Deposition of Silver in Room-Temperature Ionic Liquids and Its Surface-Enhanced Raman Scattering Effect. . Langmuir 2004, 20, 10260−10267.
    26. Pazos-Perez, N.N., W.; Schweikart, A.; Alvarez-Puebla, R. A.; Fery, A.; Liz-Marzan, L. M. , Highly Uniform SERS Substrates Formed by Wrinkle-Confined Drying of Gold Colloids. . Chem. Sci. 2010, 1, 174−178.
    27. Abalde-Cela, S.H., S.; Rodríguez-González, B.; Correa-Duarte, M. A.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Kotov, N. A., Loading of Exponentially Grown LBL Films with Silver Nanoparticles and Their Application to Generalized SERS Detection. . Angew. Chem., Int. Ed. 2009, 121, 5430−5433.
    28. Dai, X.C., R. G. , Direct Electrodeposition of Gold Nanoparticles onto Indium Tin Oxide Film Coated Glass: Application to the Detection of Arsenic(III). . Anal. Sci. 2006, 22, 567−570.
    29. Wang, Y.D., J.; Di, J.; Tu, Y. , Electrodeposition of Large Size Gold Nanoparticles on Indium Tin Oxide Glass and Application as Refractive Index Sensor. Electrochem. Commun. 2009, 11, 1034−1037.
    30. Liu, H.P., R. M. , Size-Selective Electrodeposition of Mesoscale Metal Particles in the Uncoupled Limit. J. Phys. Chem. B 2000, 104, 9131−9139.
    31. Keresztury, G., Raman spectroscopy: theory, handbook of vibrational spectroscopy. John Wiley & Sons, Vol. 1, 71, 2001.
    32. Griffiths, P.R., Introduction of vibrational spectroscopy, handbook of vibrational spectroscopy. John Wiley & Sons, Vol. 1, 71, 2001.
    33. EM, L.L.a.L., Mechanics 3rd. Pergamon Press, 1976.
    34. 汪建民, 材料分析. 中國材料科學學會, 1998: p. 73-82.
    35. Kazuto Tamura, T.N., Yukihiko Takamatsu, Junichi Matsuo, TDLS200 Tunable Diode Laser Gas Analyzer and its Application to Industrial Process. Yokogawa Technical Report English Edition Vol.53 No.2, 2010.
    36. Ewen Smith, G.D., Modern Raman Spectroscopy– A Practical Approach. John Wiley & Sons, Ltd, 2005.
    37. HUGH J. BYRNE, G.D.S.A.N.S., Raman Microscopy:Complement or Competitor? RSC Analytical Spectroscopy Monographs No. 11, 2011.
    38. Skoog and H. Nieman, Raman spectroscopy, principles of instrumental analysis 5/e. Harcourt Brace & Company, 1998.: p. 429-430,.
    39. Hahn, D.W., Raman Scattering Theory. 2007.
    40. M. Moskovits, K.K.a.H.K., Surface-Enhanced Raman Scattering: Physics and Applications. 2006: Springer.
    41. K. Kneipp, H.K., I. Itzkan, R. R. Dasari and M. S. Feld, Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 2002. 14: p. 597-624.
    42. 邱國斌&蔡定平, 金屬表面電漿簡介. 物理雙月刊, 2006. 廿八卷二期.
    43. Barnes, W.L., A. Dereux, and T.W. Ebbesen, and p.-. Nature, Surface Plasmon Subwavelength Optics. Nature, 2003. 424(6950): p. 824-830.
    44. Zayats, A.V.a.S., Near-Field Photonics: Surface Plasmon Polaritons and
    Localized Surface Plasmons. Journal of Optics a-Pure and Applied Optics,, 2003. 5(4): p. s16-s50.
    45. L. Zeiri, B.V.B., Y. Shabtai, J. Czégé and S. Efrima, Silver metal induced surface enhanced Raman of bacteria. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 208(1-3),: p. 357-362.
    46. Campion, P.K.A., Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27: p. 241-250.
    47. Lin, H.-Y., et al., Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Optics Express, 2010. 18(1): p. 165-172.
    48. Moskovits, M., Surface-Enhanced Raman Spectroscopy: A Brief Retrospective. . Journal of Raman Spectroscopy, 2005. 36(6-7): p. 485-496.
    49. Gazz., A.A., Chim, Ital. 46, II, 1916: p. 279.
    50. McNeil et al., Australian Journal Chem. 16, 1963.
    51. Olio;, A.D., G. Dascola; V. Varacca; V. Bocchi, Acad. Sci. Ser., 1968: p. 433 C267.
    52. Naarmann, H., Structure and conductivity of organic polymers. Angew. Chem. Int. Ed. 8, 1969: p. 915.
    53. Ikeda, H.S.S., Polymer, 1971. 2: p. 231.
    54. A., C.K.C.C.R.F.Y.W.P.A.J.H.H.S.E.J.L.S.C.G., Phys. Rev. Lett. 39,, 1977: p. 1098.
    55. Lemaire, J.R.R.G.D.D.F.G.M., Synth. Met. 28, C341 1989.
    56. Labes, M.M., P. Love, and L.F. Nichols, Polysulfur nitride - a metallic, superconducting polymer. Chemical Reviews, 1979. 79(1): p. 1-15.
    57. PhD, L.D., Intelligent Macromolecules for Smart Devices 2004.
    58. Wang, Y., Research progress on a novel conductive polymer–poly(3,4-ethylenedioxythiophene) (PEDOT). Journal of Physics: Conference Series, 2009. 152(1): p. 012023.
    59. Kiebooms R, A.A., Hutchison K and Wudl F, Phys. Chem. B.101 11037, 1997.
    60. Cornil J, d.S.D.A., Beljonne D and Brédas J L J. Phys. Chem. 99 5604, 1995.
    61. F, H.G.a.J., Adv. Mater. 4 116, 1992.
    62. Kvarnström, C., et al., In situ ftir spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene) films. Synthetic Metals, 1999. 101(1–3): p. 66.
    63. H Shirakawa; E. J. Louis; A. G. Macdiarmid; C. K. Chiang; A. J. Heeger, Journal of The Chemical Society-Chemical Communications. (16),
    578-580 (1977)

    64. A. F. Diaz; J. Bargon , R.S., in Handbook of Conducting Polymers, ed. T.A. Skotheim. 1986: Marcel Decker: New York.
    65. Elsenbaumer, K.Y.J.G.G.M.R.L., , J. Chem. Soc, Chem. Commun. 1346, 1986.
    66. S. D. D. V. Rughooputh; M. Nowak; S. Hotta; A. J. Heeger; F. Wudl, Synth. Met. 21, 41 (1987), 1987.
    67. 張淑美, 科學月刊,第三十二卷第二期, 2001: p. 108.
    68. Zanfrognini, B., et al., A UV–Visible/Raman spectroelectrochemical study of the stability of poly(3,4-ethylendioxythiophene) films. Polymer Degradation and Stability, 2011. 96(12): p. 2112-2119.
    69. J.-S. Kim, P.K.H.H., C.E. Murphy, N. Baynes, R.H. Friend, , Nature of Non-emissive Black Spots in Polymer Light-Emitting Diodes by In-Situ Micro-Raman Spectroscopy. Advanced Materials 14, 2002: p. 206.
    70. Tang, H., et al., Chronocoulometric determination of doping levels of polythiophenes: influences of overoxidation and capacitive processes. Synthetic Metals, 2000. 110(2): p. 105-113.
    71. Tsakova, V., S. Winkels, and J.W. Schultze, Anodic polymerization of 3,4-ethylenedioxythiophene from aqueous microemulsions. Electrochimica Acta, 2001. 46(5): p. 759-768.
    72. Yamamoto, T., T. Shimizu, and E. Kurokawa, Doping behavior of water-soluble π-conjugated polythiophenes depending on pH and interaction of the polymer with DNA. Reactive and Functional Polymers, 2000. 43(1–2): p. 79-84.
    73. Zotti, G., et al., Conductive and Magnetic Properties of 3,4-Dimethoxy- and 3,4-Ethylenedioxy-Capped Polypyrrole and Polythiophene. Chemistry of Materials, 2000. 12(10): p. 2996-3005.
    74. Barsch, U. and F. Beck, Anodic overoxidation of polythiophenes in wet acetonitrile electrolytes. Electrochimica Acta, 1996. 41(11–12): p. 1761-1771.
    75. Harada, H., T. Fuchigami, and T. Nonaka, Degradation and its prevention, and the deactivation and reactivation of electroactive polythiophene films during oxidation/reduction cycles. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991. 303(1–2): p. 139-150.
    76. Garreau, S., et al., In Situ Spectroelectrochemical Raman Studies of Poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules, 1999. 32(20): p. 6807-6812.
    77. Winther-Jensen, B. and K. West, Stability of highly conductive poly-3,4-ethylene-dioxythiophene. Reactive and Functional Polymers, 2006. 66(5): p. 479-483.
    78. Wang, J., et al., Electrochemical Seed-Mediated Growth of Surface-Enhanced Raman Scattering Active Au(111)-Like Nanoparticles on Indium Tin Oxide Electrodes. The Journal of Physical Chemistry C, 2013. 117(30): p. 15817-15828.
    79. Hunyadi, S.E. and C.J. Murphy, Bimetallic silver-gold nanowires: fabrication and use in surface-enhanced Raman scattering. Journal of Materials Chemistry, 2006. 16(40): p. 3929-3935.

    下載圖示 校內:2021-01-26公開
    校外:2021-01-26公開
    QR CODE