簡易檢索 / 詳目顯示

研究生: 許庭瑄
Hsu, Ting-Hsuan
論文名稱: 多孔矽膠填充床內水汽吸/脫附反應之熱質傳計算分析
Numerical heat and mass transfer analysis for moisture adsorption / desorption in porous silica-gel packed beds
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 113
中文關鍵詞: 矽膠填充床系統吸附反應脫附反應Darcy定律壓力及速度場口徑大小
外文關鍵詞: Silica gel packed bed, Adsorption, Desorption, Darcy’s law, Pressure and velocity field, Caliber size
相關次數: 點閱:112下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽膠填充床系統已被廣泛應用於各種工業之中例如除濕或揮發性有機化合物之吸附,而為了改良系統設計,了解並探討矽膠填充床系統之熱質傳機制是很重要的。 近來,考量矽膠固體側質傳阻抗的固體側阻抗 (solid-side resistance; SSR) 模型在數值模擬上有更佳的表現。於過往研究中,我們進行了矽膠填充床系統之數值模擬及實驗工作,數值模擬方面,我們建立了一維及二維的模型並發現二維模型的計算結果有較好的表現,因為其考慮了徑向溫度及濕度分布。不過在該模型中,我們忽略了在多孔介質中速度場的不均勻流動性質,以至於矽膠填充床吸附的總水量會被高估。
    為了考慮非均勻的壓力及速度場,我們將 Darcy 定律引入模型中。數值計算過程中,我們發現單純引入 Darcy 定律會導致速度場較不理想,故我們也利用 Darcy 定律的一階修正以求得較好的速度場,並且建立矽膠內部壓力的數學模型。經過模擬之後,我們發現壓力對於水汽吸脫附來說是一個非常重要的因素。當反應到達穩態狀態,高壓會導致較多的水分吸收。除此之外,我們分析了幾何及其他參數的影響,發現大的口徑尺寸、較短的填充床長度及較大的寬度將導致反應初期較高的水氣吸附速率,而高入口速度、較大的填充床尺寸會讓矽膠填充床有更多的水氣吸附。

    Silica-gel packed bed systems are extensively used in various industrial processes for dehumidification or adsorption of volatile organic compounds. In order to improve the design of the system, understanding the heat and mass transfer mechanism during moisture adsorption/desorption process is important. Recently, a solid-side resistance model (SSR), which consider the resistance of solid part of silica gel, has better computation performance.
    In our group, we did both experiment and numerical work for the system.In previous work, we built the one-dimensional (1-D) and two-dimensional (2-D) model and found that the 2-D model has better result of simulations because it considered temperature and humidity distribution in radial direction. But the model neglects the nonhomogeneous velocity field of a porous medium, so the total water adsorption will be overestimated.
    To consider the non-homogeneous pressure and velocity field, we add Darcy’s law into our models. During our work, we found that there was some problems of velocity field for just adding the Darcy’s law inside our previous model. So, we also use the first order correction of Darcy’s law to have a better velocity field and also build a model for the pressure inside the silica gel.
    After the computation of the process, we found that pressure is an important factor of water adsorption. Higher pressure will cause higher water content of silica gel when reaction reaches steady state. Moreover, we analyzed the effect of geometry and other parameters, we found that, big caliber size comparing to the packed bed radius, smaller length, and bigger radius will cause higher speed of adsorbing water vapor at the beginning of reaction. And high inlet velocity, and bigger size of packed bed will lead to more water vapor adsorption.

    摘要 I Abstract II 誌謝 III Content IV List of Tables VII List of Figures VIII Nomenclature XII Chapter 1 Introduction 1 1.1 Background 1 1.2 Silica gel introduction 3 1.3 Literature review 4 1.4 Objectives of This Work 9 1.5 Structure of This Thesis 10 Chapter 2 Mathematical Formulation 12 2.1 Significant Physical Assumptions 12 2.2 Heat and Mass Transfer Equation in Humid Air 14 2.2.1 Pressure and velocity 14 2.2.2 Nonlinear correction to Darcy’s Law 16 2.2.3 Mass equilibrium equation 17 2.2.4 Energy equilibrium equation 18 2.3 Heat and Mass Transfer Equation inside Silica-gel 20 2.3.1 Pressure inside silica gel 20 2.3.2 Mass equilibrium equation 22 2.3.3 Energy equilibrium equation 25 2.4 Normalization 27 2.4.1 In Humid Air 27 2.4.2 Inside Silica-gel 30 2.5 Parameter Setting 32 Chapter 3 Numerical method 41 3.1 Discretization 41 3.2 Program Flow 48 Chapter 4 Validation of Numerical Computations 50 Chapter 5 Results and Discussions 55 5.1 Pressure and velocity field 56 5.2 Moisture Adsorption Analysis 58 5.2.1 Adsorption Process 58 5.2.2 Different Position in the Packed Bed System 61 5.3 Moisture Desorption Analysis 67 5.3.1 Desorption Process 67 5.3.2 Different Position in the Packed Bed System 70 5.4 Different Caliber Size Analysis 72 5.5 Packed Bed Size Analysis 74 5.5.1 Packed Bed Length 74 5.5.2 Packed Bed Radius 77 5.6 Inlet Flow Velocity Analysis 79 5.7 Inlet Temperature and Humidity Analysis 82 5.7.1 Inlet Temperature Analysis 82 5.7.2 Inlet Humidity Analysis 84 5.8 Compare with Previous Experiments 87 Chapter 6 Conclusion and Future Work 95 6.1 Conclusion 95 6.2 Contribution of This Work 97 6.3 Future Work 97 Reference 98 Appendix 102

    [1]J. Clark, A. Mills, and H. Buchberg, “Design and testing of thin adiabatic desiccant beds for solar air conditioning applications,” Journal of Solar Energy Engineering, vol. 103, pp. 89-91, 1981.
    [2]H. Sui, H. Liu, P. An, L. He, X. Li and S. Cong, “Application of silica gel in removing high concentrations toluene vapor by adsorption and desorption process,” Journal of the Taiwan Institute of Chemical Engineers, vol. 74, pp. 218-224, 2017.
    [3]H. Deshmukh, M. P. Maiya and S. S. Murthy, “Study of sorption based energy storage system with silica gel for heating application,” Applied Thermal Engineering, vol. 111, pp. 1640-1646, 2017.
    [4]方煒, “設施生產自動化技術,” E-book, Bio-Industrial Mechatronics Engineering, National Taiwan University http://WWW.ECAA.NTU.EDU.TW/weifang/Hort/default.htm, 2012/8/29
    [5]A. A. Pesaran and A. F. Mills, “Moisture transport in silica gel packed beds—I. Theoretical study,” International Journal of Heat and Mass Transfer, vol. 30, pp. 1037-1049, 1987.
    [6]A. A. Pesaran and A. F. Mills, “Moisture transport in silica gel packed beds—II. Experimental study,” International Journal of Heat and Mass Transfer, vol. 30, pp. 1051-1060, 1987.
    [7]K. Kafui, “Transient heat and moisture transfer in thin silica gel beds,” Journal of Heat Transfer, vol. 116, pp. 946-953, 1994.
    [8]J.-Y. San and G.-D. Jiang, “Modeling and testing of a silica gel packed-bed system,” International Journal of Heat and Mass Transfer, vol. 37, pp. 1173-1179, 1994.
    [9]T. Dobre, O. C. Parvulescu, G. Iavorschi, M. Stroescu and A. Stoica, “Volatile organic compounds removal from gas streams by adsorption onto activated carbon,” Industrial and Engineering Chemistry Research, vol. 53, pp. 3622-3628, 2014.
    [10]J. A. Bernstein, N. Alexis, H. Bacchus, I. L. Bernstein, P. Fritz and E. Horner, “The health effects of nonindustrial indoor air pollution,” Journal of Allergy and Clinical Immunology, vol. 121, pp. 585-591, 2008.
    [11]J. F. Saldarriaga, R. Aguado and G. E. Morales, “Assessment of VOC emissions from municipal solid waste composting,” Environmental Engineering Science, vol. 31, pp. 300-307, 2014.
    [12]W. Wei, S. Wang, J. Hao and S. Cheng, “Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020,” Frontiers of Environmental Science & Engineering, vol. 8, pp. 27-41, 2014.
    [13]B. P. Kelleher, A. M. Doyle, B. K. Hodnett and T. F. O’Dwyer, “An Investigation into the Adsorption Characteristics of Grafted Mesoporous Silicates for the Removal of Tetramethyl Ammonium Hydroxide from Aqueous Solution,” Adsorption Science & Technology, vol. 20, pp. 787-796, 2002.
    [14]D. Prahas, J. Liu, S. Ismadji and M. J. Wang, “Adsorption of tetramethylammonium hydroxide on activated carbon,” Journal of Environmental Engineering, vol. 138, pp. 232-238, 2012.
    [15]D. S. Ju, “Effects of release-pressure control on the hydrogen supply characteristics of metal hydride reactors,” Master’s Thesis, National Cheng Kung University, 2008.
    [16]W. L. Tsui, Theoretical Modeling and Numerical Simulation for The Hydrogen Storage Characteristics of Metal Hydride Particles, Master’s Thesis, National Cheng Kung University, 2010.
    [17]M. L. Tsai, Thermofluid analysis of metal-hydride hydrogen storage systems: Effects of exit pressure control and metal-foam volume fraction on system performance, Doctor’s Thesis, National Cheng Kung University, 2011.
    [18]C. E. Li, Effects of metal foam volume-fraction distribution on the performance of metal-hydride hydrogen storage systems, Master’s Thesis, National Cheng Kung University, 2011.
    [19]C. M. Wu, An experimental study on the thermal management of porous adsorption reactors, Master’s Thesis, National Cheng Kung University, 2013.
    [20]S. H. Lin, Experimental Performance Analysis of Thermal Management for Porous Adsorption/ Desorption Reactors, Master’s Thesis, National Cheng Kung University, 2014.
    [21]T. P. Syawitri, Numerical Investigation into The Effect of Metal-foam Volume Fraction on The Performance of Metal Hydride Reactor Subjected to Periodic Charging and Discharging, Master’s Thesis, National Cheng Kung University, 2015.
    [22]K. C. Chuang, Numerical Performance Simulation of a Metal Hydride Reactor with Spatially Distributed Metal-foam Volume Fraction, Master’s Thesis, National Cheng Kung University, Tainan, 2015.
    [23]L. Y. Huang, A numerical study on moisture adsorption/desorption in silica gel packed beds, Master’s Thesis, National Cheng Kung University, 2016.
    [24]T. I. Wu, Numerical Heat and Mass Transfer Analysis for Moisture Adsorption/ Desorption in Axisymmetric Silica-gel Packed Beds, Master’s Thesis, National Cheng Kung University, 2017.
    [25]O. Hougen and W. Marshall, “Adsorption from a fluid stream flowing through a stationary granular bed,” Chemical Engineering Progress, vol. 43, pp. 197-208, 1947.
    [26]M. Firdaouss, J.-L. Guermond and P. Le Quéré, “Nonlinear corrections to Darcy’s law at low Reynolds numbers” J. Fluid Mech. vol. 343, pp. 331–350, 1997.
    [27]J. Q. Ni, Development of a theoretical adsorption model under constant pressure condition and measurement of apparent solid-side mass diffusivity for a silica gel-water vapor adsorption system, Doctor’s Thesis, Mechanical Engineering, National Chung Hsing University, 2001.
    [28]N. Wakao, S. Kaguei and T. Funazkri, “Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of Nusselt numbers,” Chemical engineering science, vol. 34, pp. 325-336, 1979.
    [29]N. Wakao and T. Funazkri, “Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: correlation of Sherwood numbers,” Chemical Engineering Science, vol. 33, pp. 1375-1384, 1978.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE