| 研究生: |
黃建樺 Huang, Chien-Hua |
|---|---|
| 論文名稱: |
回收有價金屬合成多功能可調粒徑奈米核殼材料 Recycling of valuable metals for synthesis of smart nanosize-controllable core-shell materials |
| 指導教授: |
王鴻博
Wang, H. Paul |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 218 |
| 中文關鍵詞: | 銅 、環糊精 、敏染式太陽能電池 、電鍍廢水 、金屬奈米粒子 |
| 外文關鍵詞: | Copper, Cyclodextrin, Dye-sensitized solar cell, Electroplating wastewater, Metal nanoparticles |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文重點是發展有效回收廢棄物或廢水中有價金屬離子方法,並且將回收物應用於高科技產業,以增加資源回收經濟效益。利用環糊精(cyclodextrin (CD))螯合(chelation)回收電鍍廢水中40~50%銅,其錯合物(Cu2+-CD complex)在373 K烘乾24小時,573~673 K碳化兩個小時,可合成碳殼包夾奈米金屬銅(Cu)之核殼奈米(Cu@C)物質。穿透式電子顯微鏡(TEM)顯示奈米銅尺寸介於10~60 nm。XANES(X-ray near edge structure)光譜指出所螯合之銅(Cu(II))在碳化時被還原成Cu;環糊精上之氫氧基(OH)(hydroxyl groups)也被氧化成水蒸汽。由EXAFS(extended X-ray absorption fine structure)光譜發現其銅之配位數(coordination number (CN))隨著粒徑減小而減少,例如Cu粒徑為23 nm時,配位數減少至8(塊狀Cu為12)。
從上述回收廢水中銅離子,合成奈米Cu@C材料之螯合實驗發現,可以建立一個非常簡單方法,以合成可調粒徑(4~40 nm)金屬(Cu、Ag、Pd、Rh、Ni、Fe、Co及Cr)或合金之核殼物質,尤其,外層碳殼厚度約3~5 nm,可避免核心金屬再團聚及被氧化。我們也發現所合成之奈米金屬粒徑(dp (nm))與OH(β-CD)/M(金屬)之莫爾比(2.3~15)形成一種相關性:dpZ/R(Z:金屬價數,R:原子半徑(nm)),此重要發現指出控制OH/M比例可以合成特定尺寸之金屬奈米粒子。另外,與尺寸相依(size-dependent)之物理特性例如:奈米金屬熔點(melting temperature)也可由實驗觀測得知。所合成之多功能可調粒徑奈米金屬、多金屬或合金也形成一個新材料應用領域,具高科技應用潛力。
從回收之銅研製之奈米核殼材料之應用,也有初步成果,均勻塗佈奈米Cu@C於敏染式太陽能電池(dye-sensitized solar cell (DSSC))之陰極可以有效提升效率。UV-visible光譜顯示塗佈於ITO(indium-doped tin oxide)玻璃之Cu@C隨粒徑尺寸增加而紅移(因長軸共振(longitudinal resonance)),場發射掃描式電子顯微鏡(FE-SEM)顯示奈米Cu@C均勻分布於ITO玻璃上。相較於較貴之傳統白金(Pt)電極,利用Cu@C塗佈之ITO陰極可以有效提升電池效率至少50%,另外,隨著塗佈Cu@C粒徑之減少(20 → 7 nm),電池效率可以增加約80%。
To a better recovery of valuable metal ions from solid wastes or wastewater, a simple method has been developed. Experimentally, about 40-50% of copper in the electroplating (EP) wastewater can be chelated with cyclodextrin (CD). The Cu2+-CD complex was dried at 373 K for 24 hours and carbonized at 573-673 K for two hours to obtain nanosize metallic copper (Cu) encapsulated in the carbon shells (Cu@C). The images observed by transmission electron microscope (TEM) indicate that the size of Cu in the Cu@C is in the range of 10-60 nm. The component fitted X-ray absorption near edge structure (XANES) spectra suggest that the chelated Cu2+ is reduced to form Cu as the hydroxyl groups of the CD are oxidized to H2O vapor during carbonization. By extended X-ray absorption fine structure (EXAFS) spectroscopy, it is found that the average coordination number (CN) of Cu in the Cu@C nanoparticles decreases along with its particle size, the CN of the nanosize Cu (23 nm) is reduced (12 → 8) compared to its bulky one.
Proceeding in a similar fashion, a very simple method for synthesizing size-controllable (4-40 nm) metals (Cu, Ag, Pd, Rh, Ni, Fe, Co, and Cr) or alloys within carbon shells has also been developed. The thickness of the carbon shells that prevents the core Cu from being aggregated or oxidized ranges from 3-5 nm. In addition, the nanosize core metal exhibits a correlation between dpZ/R (where Z: valence of metal and R: atomic radius (nm) of metal) and the OH (on β-CD)/M (metal) molar ratios of 2.3-15. This has significant implications in that nanosize metals with selected sizes can be obtained at a known OH/M molar ratio. A dependence of melting temperature depression on the size of the metal nanoparticles (Cu, Ag, and CuAg) within carbon shells has been experimentally observed for the first time. These carbon coated size-controllable metals, multi-metals or alloys may form a new class of materials that certainly have promising applications in many areas of nanotechnology.
Applications of the nanosize Cu@C materials have been preliminarily explored in electro-optical devices. Deposition of the nanosize Cu@C thin film onto a dye-sensitized solar cell (DSSC) cathode can enhance its efficiency. The UV-visible spectrum of the nanosize Cu@C coated indium-doped tin oxide (ITO) shows a red shift (probably due to the longitudinal resonance) as the size of Cu in the Cu@C increases. Moreover, the images observed by field emission-scanning electron microscope (FE-SEM) indicate that the nanosize Cu@C are well dispersed on the ITO. Interestingly, an enhanced efficiency of the DSSCs with the nanosize Cu@C coated ITO cathode by 50% is found if compared with the relatively expensive Pt electrode. As the size of Cu in the Cu@C on ITO decreases (e.g., 20 → 7 nm), the efficiency of the DSSCs can be increased by 80% approximately.
Abello, L., Rosman, N., Genet, F. and Lucazeau, G., "Micro-Raman characterization of thin-films and study of the transformations induced by a plused electric-field." J. Phys. IV, 1(C7), 497 (1991).
Aber, S., Amani-Ghadim, A. R. and Mirzajani, V., "Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network." J. Hazard. Mater., 171(1-3), 484 (2009).
Adhoum, N., Monser, L., Bellakhal, N. and Belgaied, J. E., "Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation." J. Hazard. Mater., 112(3), 207 (2004).
Aguado, J., Arsuaga, J. M., Arencibia, A., Lindo, M. and Gascon, V., "Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica." J. Hazard. Mater., 163(1), 213 (2009).
Ai, Z. H., Zhang, L. Z., Lee, S. C. and Ho, W. K., "Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity." J. Phys. Chem. C, 113(49), 20896 (2009).
Al-Enezi, G., Hamoda, M. F. and Fawzi, N., "Ion exchange extraction of heavy metals from wastewater sludges." J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 39(2), 455 (2004).
Alivisatos, A. P., "Semiconductor clusters, nanocrystals, and quantum dots." Science, 271(5251), 933 (1996).
Allouche, J., Boissiere, M., Helary, C., Livage, J. and Coradin, T., "Biomimetic core-shell gelatine/silica nanoparticles: A new example of biopolymer-based nanocomposites." J. Mater. Chem., 16(30), 3120 (2006).
Anandan, S., Wen, X. G. and Yang, S. H., "Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells." Mater. Chem. Phys., 93(1), 35 (2005).
Anzlovar, A., Orel, Z. C. and Zigon, M., "Copper(I) oxide and metallic copper particles formed in 1,2-propane diol." J. Euro. Cera. Soc., 27(2-3), 987 (2007).
Ao, Z. M., Zheng, W. T. and Jiang, Q., "Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles." Nanotechnology, 18(25), 1 (2007).
Attia, A., Zukalova, M., Rathousky, J., Zukal, A. and Kavan, L., "Mesoporous electrode material from alumina-stabilized anatase TiO2 for lithium ion batteries." J. Solid State Electrochem., 9(3), 138 (2005).
Azarian, A., Zad, A. I., Dolati, A. and Ghorbani, M., "Time dependence of the surface plasmon resonance of copper nanorods." J. Phys.-Condes. Matter, 19(44), 9 (2007).
Benfield, R. E., "Mean coordination numbers and the nonmetal metal transition in clusters." J. Chem. Soc.-Faraday Trans., 88(8), 1107 (1992).
Benfield, R. E., Filipponi, A., Morgante, N. and Schmid, G., "Structural characterization of the giant organometallic platinum cluster Pt-309(phen*)(36)O-30 using EXAFS." J. Organomet. Chem., 573(1-2), 299 (1999).
Berto, S., Bruzzoniti, M. C., Cavalli, R., Perrachon, D., Prenesti, E., et al., "Highly crosslinked ionic beta-cyclodextrin polymers and their interaction with heavy metals." J. Inclu. Phenom. Macrocyclic Chem., 57(1-4), 637 (2007).
Besenbacher, F., Chorkendorff, I., Clausen, B. S., Hammer, B., Molenbroek, A. M., et al., "Design of a surface alloy catalyst for steam reforming." Science, 279(5358), 1913 (1998).
Bezryadin, A., Dekker, C. and Schmid, G., "Electrostatic trapping of single conducting nanoparticles between nanoelectrodes." Appl. Phys. Lett., 71(9), 1273 (1997).
Bhaskaran, V., Atanasova, P., Hampden-Smith, M. J. and Kodas, T. T., "Low-pressure chemical vapor deposition of Cu-Pd films: Alloy growth kinetics." Chem. Mat., 9(12), 2822 (1997).
Borchert, H., Shevehenko, E. V., Robert, A., Mekis, I., Kornowski, A., et al., "Determination of nanocrystal sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse COPt3 particles." Langmuir, 21(5), 1931 (2005).
Boricha, A. G. and Murthy, Z. V. P., "Preparation, characterization and performance of nanofiltration membranes for the treatment of electroplating industry effluent." Sep. Purif. Technol., 65(3), 282 (2009).
Brady, D., Stoll, A. and Duncan, J. R., "Biosorption of heavy-metal cations by nonviable yeast biomass." Environ. Technol., 15(5), 429 (1994).
Bratu, I., Astilean, S., Ionesc, C., Indrea, E., Huvenne, J. P., et al., "FT-IR and X-ray spectroscopic investigations of Na-diclofenac-cyclodextrins interactions." Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 54(1), 191 (1998).
Buffat, P. and Borel, J. P., "Size effect on melting temperature of gold particles." Phys. Rev. A, 13(6), 2287 (1976).
Cai, G. X., Ren, F., Xiao, X. H., Fan, L. X., Zhou, X. D., et al., "Morphology control and optical absorption properties of Ag nanoparticles by ion implantation." J. Mater. Sci. Technol., 25(5), 669 (2009).
Callegari, A., Tonti, D. and Chergui, M., "Photochemically grown silver nanoparticles with wavelength-controlled size and shape." Nano Lett., 3(11), 1565 (2003).
Carnes, C. L. and Klabunde, K. J., "Synthesis, isolation, and chemical reactivity studies of nanocrystalline zinc oxide." Langmuir, 16(8), 3764 (2000).
Castro, T., Reifenberger, R., Choi, E. and Andres, R. P., "Size-dependent melting temperature of individual nanometer-sized metallic clusters." Phys. Rev. B, 42(13), 8548 (1990).
Chandra, M. and Das, P. K., "Size dependence and dispersion behavior of the first hyperpolarizability of copper nanoparticles." Chem. Phys. Lett., 476(1-3), 62 (2009).
Chang, F. C., Lo, S. L. and Ko, C. H., "A copper removal process for printed circuit board wastewater sludge applying extraction and cementation with chelating agents recovery." Environ. Eng. Sci., 24(8), 1006 (2007).
Chang, I. S. and Kim, B. H., "Effect of sulfate reduction activity on biological treatment of hexavalent chromium Cr(VI) contaminated electroplating wastewater under sulfate-rich condition." Chemosphere, 68(2), 218 (2007).
Chen, F. L., Sun, I. W., Wang, H. P. and Huang, C. H., "Nanosize copper dispersed ionic liquids as an electrolyte of new dye-Sensitized solar cells." J. Nanomater., 4 (2009).
Chen, M. and Nikles, D. E., "Synthesis, self-assembly, and magnetic properties of FexCoyPt100-x-y nanoparticles." Nano Lett., 2(3), 211 (2002).
Chien, Y. C., Wang, H. P. and Yang, Y. W., "Mineralization of CCl4 with copper oxide." Environ. Sci. Technol., 35(15), 3259 (2001).
Chisholmbrause, C. J., Oday, P. A., Brown, G. E. and Parks, G. A., "Evidence for multinuclear metal-ion complexes at solid water interfaces from X-ray absorption spectroscopy." Nature, 348(6301), 528 (1990).
Choi, W. S., Koo, H. Y. and Kim, D. Y., "Scalable synthesis of chestnut-bur-like magnetic capsules loaded with size-controlled mono- or bimetallic cores." Adv. Mater., 19(3), 451 (2007).
Chopkar, M., Sudarshan, S., Das, P. K. and Manna, I., "Effect of particle size on thermal conductivity of nanofluid." Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 39A(7), 1535 (2008).
Chou, N. H., Ke, X. L., Schiffer, P. and Schaak, R. E., "Room-temperature chemical synthesis of shape-controlled indium nanoparticles." J. Am. Chem. Soc., 130(26), 8140 (2008).
Contrata, W., Mitchell, M. J. and Mochel, J. M., "Disordering of platinum clusters." Ultramicroscope, 48(3), 297 (1993).
Dadosh, T., "Synthesis of uniform silver nanoparticles with a controllable size." Mater. Lett., 63(26), 2236 (2009).
De-Vries, G. A., Brunnbauer, M., Hu, Y., Jackson, A. M., Long, B., et al., "Divalent metal nanoparticles." Science, 315(5810), 358 (2007).
Delogu, F., "Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: Molecular dynamics simulations." Phys. Rev. B, 72(20), 1 (2005).
Depanfilis, S., Dacapito, F., Haas, V., Konrad, H., Weissmuller, J., et al., "Local structure and size effects in nanophase palladium-An X-ray absorption study." Phys. Lett. A, 207(6), 397 (1995).
Dick, K., Dhanasekaran, T., Zhang, Z. Y. and Meisel, D., "Size-dependent melting of silica-encapsulated gold nanoparticles." J. Am. Chem. Soc., 124(10), 2312 (2002).
Dror-Ehre, A., Mamane, H., Belenkova, T., Markovich, G. and Adin, A., "Silver nanoparticle-E. coli colloidal interaction in water and effect on E-coli survival." J. Colloid Interface Sci., 339(2), 521 (2009).
Duan, J. L., Cornelius, T. W., Liu, J., Karim, S., Yao, H. J., et al., "Surface plasmon resonances of Cu nanowire arrays." J. Phys. Chem. C, 113(31), 13583 (2009).
El-Brolossy, T. A., Abdallah, T., Mohamed, M. B., Abdallah, S., Easawi, K., et al., "Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique." Eur. Phys. J.-Spec. Top., 153, 361 (2008)..
Engeldinger, E., Armspach, D. and Matt, D., "Capped cyclodextrins." Chem. Rev., 103(11), 4147 (2003).
Fan, T. W. M., Higashi, R. M. and Lane, A. N., "Chemical characterization of a chelator-treated soil humate by solution-state multinuclear two-dimensional NMR with FTIR and pyrolysis-GCMS." Environ. Sci. Technol., 34(9), 1636 (2000).
Feeley, J. S., Stakheev, A. Y., Cavalcanti, F. A. P. and Sachtler, W. M. H., "CO hydrogenation over PdNix alloys encaged in NAY zeolite." J. Catal., 136(1), 182 (1992).
Feng, N. C., Guo, X. Y. and Liang, S., "Adsorption study of copper (II) by chemically modified orange peel." J. Hazard. Mater., 164(2-3), 1286 (2009).
Feng, X., Wu, Z. C. and Chen, X. F., "Removal of metal ions from electroplating effluent by EDI process and recycle of purified water." Sep. Purif. Technol., 57(2), 257 (2007).
Feng, Z. G. and Zhao, S. P., "Synthesis and characterization of biodegradable hydrogels based on photopolymerizable acrylate-terminated CL-PEG-CL macromers with supramolecular assemblies of alpha-cyclodextrins." Polymer, 44(18), 5177 (2003).
Fernandez, J. L., White, J. M., Sun, Y. M., Tang, W. J., Henkelman, G., et al., "Characterization and theory of electrocatalysts based on scanning electrochemical microscope screening methods." Langmuir, 22(25), 10426 (2006).
Ferrari, A. C. and Robertson, J., "Interpretation of Raman spectra of disordered and amorphous carbon." Phys. Rev. B, 61(20), 14095 (2000).
Ferrari, A. C., "Determination of bonding in diamond-like carbon by Raman spectroscopy." Diam. Relat. Mat., 11(3-6), 1053 (2002).
Ferri, V., Ferro, S., Martinez-Huitle, C. A. and De Battisti, A., "Electrokinetic extraction of surfactants and heavy metals from sewage sludge." Electrochim. Acta, 54(7), 2108 (2009).
Fritsche, H. G. and Benfield, R. E., "Exact analytical formulas for mean coordination numbers in clusters." Z. Phys. D-Atoms Mol. Clusters, 26, 15 (1993).
Fu, Q., Saltsburg, H. and Flytzani-Stephanopoulos, M., "Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts." Science, 301(5635), 935 (2003).
Fukuoka, A., Araki, H., Sakamoto, Y., Sugimoto, N., Tsukada, H., et al., "Template synthesis of nanoparticle arrays of gold and platinum in mesoporous silica films." Nano Lett., 2(7), 793 (2002).
Gasparovicova, D., Kralik, M., Hronec, M., Vallusova, Z., Vinek, H., et al., "Supported Pd-Cu catalysts in the water phase reduction of nitrates: Functional resin versus alumina." J. Mol. Catal. A-Chem., 264(1-2), 93 (2007).
Ge, J., Xing, W., Xue, X., Liu, C., Lu, T., et al., "Controllable synthesis of Pd nanocatalysts for direct formic acid fuel cell (DFAFC) application: From Pd hollow nanospheres to Pd nanoparticles." J. Phys. Chem. C, 111(46), 17305 (2007).
Gittins, D. I. and Caruso, F., "Tailoring the polyelectrolyte coating of metal nanoparticles." J. Phys. Chem. B, 105(29), 6846 (2001).
Gou, L. F. and Murphy, C. J., "Solution-phase synthesis of Cu2O nanocubes." Nano Lett., 3(2), 231 (2003).
Greegor, R. B. and Lytle, F. W., "Morphology of supported metal clusters-Determination by EXAFS and chemisorption." J. Catal., 63(2), 476 (1980).
Grouchko, M., Kamyshny, A. and Magdassi, S., "Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing." J. Mater. Chem., 19(19), 3057 (2009).
Harmer, M. A., Farneth, W. E. and Sun, Q., "High surface area nafion resin/silica nanocomposites: A new class of solid acid catalyst." J. Am. Chem. Soc., 118(33), 7708 (1996).
Haukka, S. and Suntola, T., "Advanced materials processing by adsorption control." Interface Sci., 5(2-3), 119 (1997).
Heidmann, I. and Calmano, W., "Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation." J. Hazard. Mater., 152(3), 934 (2008).
Hong, T. K. and Yang, H. S., "Nanoparticle-dispersion-dependent thermal conductivity in nanofluids." J. Korean Phys. Soc., 47, 321 (2005).
Hsiao, M. C., Wang, H. P. and Yang, Y. W., "EXAFS and XANES studies of copper in a solidified fly ash." Environ. Sci. Technol., 35(12), 2532 (2001).
Hsiao, M. C., Wang, H. P., Huang, C. H., Chang, J. E. and Wei, Y. L., "Tracking of copper in contaminated soils." J. Electron Spectrosc. Relat. Phenom., 156, 208 (2007).
Huang, C. H., Wang, H. P., Chang, J. E. and Eyring, E. M., "Synthesis of nanosize-controllable copper and its alloys in carbon shells." Chem. Commun.(31), 4663 (2009).
Huang, H. L. and Wang, H. P., "Speciation of nano-copper collected in molecular sieves from chemical-mechanical planarization wastewater." J. Electron Spectrosc. Relat. Phenom., 144-147, 307 (2005).
Huang, H. L., Wang, H. P., Wei, G. T., Sun, I. W., Huang, J. F., et al., "Extraction of nanosize copper pollutants with an ionic liquid." Environ. Sci. Technol., 40(15), 4761 (2006).
Huang, X. H., El-Sayed, I. H., Qian, W. and El-Sayed, M. A., "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods." J. Am. Chem. Soc., 128(6), 2115 (2006).
Huang, Y. J., Wang, H. P. and Lee, J. F., "Catalytic reduction of NO on copper/MCM-41 studied by in situ EXAFS and XANES." Chemosphere, 50(8), 1035-1041 (2003).
Huber, G. W., Shabaker, J. W. and Dumesic, J. A., "Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons." Science, 300(5628), 2075 (2003).
Hulteen, J. C., Treichel, D. A., Smith, M. T., Duval, M. L., Jensen, T. R., et al., "Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays." J. Phys. Chem. B, 103(19), 3854 (1999).
Hwang, B. J., Sarma, L. S., Chen, J. M., Chen, C. H., Shih, S. C., et al., "Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy." J. Am. Chem. Soc., 127(31), 11140 (2005).
Islamoglu, S., Yilmaz, L. and Ozbelge, H. O., "Development of a precipitation based separation scheme for selective removal and recovery of heavy metals from cadmium rich electroplating industry effluents." Sep. Sci. Technol., 41(15), 3367 (2006).
Jacob, D. S., Genish, I., Klein, L. and Gedanken, A., "Carbon-coated core shell structured copper and nickel nanoparticles synthesized in an ionic liquid." J. Phys. Chem. B, 110(36), 17711 (2006).
Jain, P. K., Huang, X., El-Sayed, I. H. and El-Sayad, M. A., "Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems." Plasmonics, 2(3), 107 (2007).
Jentys, A., "Estimation of mean size and shape of small metal particles by EXAFS." PCCP Phys. Chem. Chem. Phys., 1(17), 4059 (1999).
Jha, N. and Ramaprabhu, S., "Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids." J. Appl. Phys., 106(8), 6 (2009).
Johannessen, B., Kluth, P., Glover, C. J., Azevedo, G. D., Llewellyn, D. J., et al., "Structural characterization of Cu nanocrystals formed in SiO2 by high-energy ion-beam synthesis." J. Appl. Phys., 98(2), 9 (2005).
Jongh, J. d., "Physics and chemistry of metal cluster compounds: Model systems for small metal particles." Springer, 1st Ed. (1994).
Kakuta, S. and Abe, T., "Photocatalytic activity of Cu2O nanoparticles prepared through novel synthesis method of precursor reduction in the presence of thiosulfate." Solid State Sci., 11(8), 1465 (2009).
Kameneva, M. Y., Kozeeva, L. P., Podberezskaya, N. V., Naumov, D. Y., Kurat'eva, N. V., et al., "Composite microstructures in the Bi-Sr-Ca-Cu-O system." Inorg. Mater., 43(8), 845 (2007).
Kang, S. H., Choi, S. H., Kang, M. S., Kim, J. Y., Kim, H. S., et al., "Nanorod-based dye-sensitized solar cells with improved charge collection efficiency." Adv. Mater., 20(1), 54 (2008).
Kawai, N., Futakuchi, M., Yoshida, T., Ito, A., Sato, S., et al., "Effect of heat therapy using magnetic nanoparticles conjugated with cationic liposomes on prostate tumor in bone." Prostate, 68(7), 784 (2008).
Kerker, M., "The scattering of light and other electromagnetic radiation." New York, Academic Press (1969).
Khoutami, A., Legrand, B., Mottet, C. and Treglia, G., "On the influence of topology on the energy profile in metallic Pd culsters." Surf. Sci., 309, 735 (1994).
Kim, B. R., Gaines, W. A., Szafranski, M. J., Bernath, E. F. and Miles, A. M., "Removal of heavy metals from automotive wastewater by sulfide precipitation." J. Environ. Eng.-ASCE, 128(7), 612 (2002).
Kim, J. S., Lee, K. S. and Kim, S. S., "Third-order optical nonlinearity of Cu nanoparticle-dispersed Ba0.5Sr0.5TiO3 films prepared by alternating pulsed laser deposition." Thin Solid Films, 515(4), 2332 (2006).
Kim, M., Sohn, K., Bin Na, H. and Hyeon, T., "Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells." Nano Lett., 2(12), 1383 (2002).
Kobayashi, Y. and Sakuraba, T., "Silica-coating of metallic copper nanoparticles in aqueous solution." Colloid Surf. A-Physicochem. Eng. Asp., 317(1-3), 756 (2008).
Kobayashi, Y., Ishida, S., Ihara, K., Yasuda, Y., Morita, T., et al., "Synthesis of metallic copper nanoparticles coated with polypyrrole." Colloid Polym. Sci., 287(7), 877 (2009).
Kreibig, U. and Vollmer, M., "Optical Properties of Metal Clusters." Heidelberg, Springer, 1st Ed. (1995).
Kruk, M., Jaroniec, M. and Sayari, A., "Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements." Langmuir, 13(23), 6267 (1997).
Kurniawan, T. A., Chan, G. Y. S., Lo, W. H. and Babel, S., "Physico-chemical treatment techniques for wastewater laden with heavy metals." Chem. Eng. J., 118(1-2), 83 (2006).
Lakowicz, J. R., "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission." Anal. Biochem., 337(2), 171 (2005).
Lakowicz, J. R., "Principles of fluorescence spectroscopy." New York, Springer, 3rd Ed. 954 (2006).
Lee, J., Kim, D. K. and Kang, W., "Preparation of Cu nanoparticles from Cu powder dispersed in 2-propanol by laser ablation." Bull. Korean Chem. Soc., 27(11), 1869 (2006).
Lester, E., Blood, P., Denyer, J., Giddings, D., Azzopardi, B., et al., "Reaction engineering: The supercritical water hydrothermal synthesis of nano-particles." J. Supercrit. Fluids, 37(2), 209 (2006).
Li, C. W., Chen, Y. M. and Hsiao, S. T., "Compressed air-assisted solvent extraction (CASX) for metal removal." Chemosphere, 71(1), 51 (2008).
Li, Y. J., Zeng, X. P., Liu, Y. F., Yan, S. S., Hu, Z. H., et al., "Study on the treatment of copper-electroplating wastewater by chemical trapping and flocculation." Sep. Purif. Technol., 31, 91 (2003).
Liao, C. Y., Wang, H. P., Chen, F. L., Huang, C. H. and Fukushima, Y., "Applications of Cu@C Nanoparticles in New Dye-Sensitized Solar Cells." J. Nanomater., 4 (2009).
Likhachev, V. N., Astakhova, T. Y., Vinogradov, G. A. and Alymov, M. I., "Anomalous heat capacity of nanoparticles." Russ. J. Phys. Chem. B, 1(1), 74 (2007).
Lin, C. M., Hung, T. L., Huang, Y. H., Wu, K. T., Tang, M. T., et al., "Size-dependent lattice structure of palladium studied by x-ray absorption spectroscopy." Phys. Rev. B, 75(12), 6 (2007).
Lin, K. S. and Wang, H. P., "Catalytic oxidation of 2-Chlorophenol in confined channels of ZSM-48." J. Phys. Chem. B, 105(21), 4956-4960 (2001).
Liu, J. and Wang, H. T., "Preparation of microporous carbons by using alpha-cyclodextrin as molecular porogen." J. Non-Cryst. Solids, 351(10-11), 936 (2005).
Liu, S. H. and Wang, H. P., "In situ speciation studies of copper-humic substances in a contaminated soil during electrokinetic remediation." J. Environ. Qual., 33(4), 1280 (2004).
Liu, S. H. and Wang, H. P., "Fate of zinc in an electroplating sludge during electrokinetic treatments." Chemosphere, 72(11), 1734 (2008).
Liu, Y. Y. and Fan, X. D., "Synthesis, properties and controlled release behaviors of hydrogel networks using cyclodextrin as pendant groups." Biomaterials, 26(32), 6367 (2005).
Liz-Marzan, L. M., Giersig, M. and Mulvaney, P., "Synthesis of nanosized gold-silica core-shell particles." Langmuir, 12(18), 4329 (1996).
Loffler, J. and Weissmuller, J., "Grain boundary atomic structure in nanocrystalline palladium from X-ray atomic distribution functions." Phys. Rev. B, 52(10), 7076 (1995).
Lu, X. M., Rycenga, M., Skrabalak, S. E., Wiley, B. and Xia, Y. N., "Chemical synthesis of novel plasmonic nanoparticles." Annu. Rev. Phys. Chem., 60, 167 (2009).
Lu, Y. F., Huang, S. M. and Sun, Z., "Raman spectroscopy of phenylcarbyne polymer films under pulsed green laser irradiation." J. Appl. Phys., 87(2), 945 (2000).
Mackay, M. E., Tuteja, A., Duxbury, P. M., Hawker, C. J., Van Horn, B., et al., "General strategies for nanoparticle dispersion." Science, 311(5768), 1740 (2006).
Manai, G. and Delogu, F., "Homogeneous and heterogeneous melting behavior of bulk and nanometer-sized Cu systems: a numerical study." J. Mater. Sci., 42(16), 6672 (2007).
Manai, G. and Delogu, F., "Numerical simulations of the melting behavior of bulk and nanometer-sized Cu systems." Physica B, 392(1-2), 288 (2007).
Mandal, T. K., Fleming, M. S. and Walt, D. R., "Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature." Nano Lett., 2(1), 3 (2002).
Marcus, B., Fayette, L., Mermoux, M., Abello, L. and Lucazeau, G., "Analysis of the structure of multicomponent carbon-films by resonant Raman-scattering." J. Appl. Phys., 76(6), 3463 (1994).
Marder, L., Bernardes, A. M. and Ferreira, J. Z., "Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system." Sep. Purif. Technol., 37(3), 247 (2004).
Matsui, Y., Kurita, T., Yagi, M., Okayama, T., Mochida, K., et al., "Formation and structure of copper(II) complexes with cyclodextrins in an alkaline solution." Bull. Chem. Soc. Jpn., 48(7), 2187 (1975).
Messinger, B. J., Vonraben, K. U., Chang, R. K. and Barber, P. W., "Local fields at the surface of noble-metal microspheres." Phys. Rev. B, 24(2), 649 (1981).
Molenbroek, A. M., Haukka, S. and Clausen, B. S., "Alloying in Cu/Pd nanoparticle catalysts." J. Phys. Chem. B, 102(52), 10680 (1998).
Monser, L. and Adhoum, N., "Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater." Sep. Purif. Technol., 26(2-3), 137 (2002).
Muraviev, D. N., Macanas, J., Parrondo, J., Munoz, M., Alonso, A., et al., "Cation-exchange membrane as nanoreactor: Intermatrix synthesis of platinum-copper core-shell nanoparticles." React. Funct. Polym., 67(12), 1612 (2007).
Myers, S. V., Frenkel, A. I. and Crooks, R. M., "X-ray absorption study of PdCu bimetallic alloy nanoparticles containing an average of similar to 64 atoms." Chem. Mat., 21(20), 4824 (2009).
Narayanan, R. and El-Sayed, M. A., "Carbon-supported spherical palladium nanoparticles as potential recyclable catalysts for the Suzuki reaction." J. Catal., 234(2), 348 (2005).
Nicewarner-Pena, S. R., Freeman, R. G., Reiss, B. D., He, L., Pena, D. J., et al., "Submicrometer metallic barcodes." Science, 294(5540), 137 (2001).
Nikoobakht, B. and El-Sayed, M. A., "Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods." Langmuir, 17(20), 6368 (2001).
Nilekar, A. U., Xu, Y., Zhang, J. L., Vukmirovic, M. B., Sasaki, K., et al., "Bimetallic and ternary alloys for improved oxygen reduction catalysis." Top. Catal., 46(3-4), 276 (2007).
NIST, http://webbook.nist.gov/chemistry/name-ser.html.
Niu, W. X., Li, Z. Y., Shi, L. H., Liu, X. Q., Li, H. J., et al., "Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes." Cryst. Growth Des., 8(12), 4440 (2008).
Ng, C. H. B., Yang, J. X. and Fan, W. Y., "Synthesis and self-assembly of one-dimensional sub-10 nm Ag nanoparticles with cyclodextrin." J. Phys. Chem. C, 112(11), 4141 (2008).
Ngo, Q., Cruden, B. A., Cassell, A. M., Sims, G., Meyyappan, M., et al., "Thermal interface properties of Cu-filled vertically aligned carbon nanofiber arrays." Nano Lett., 4(12), 2403 (2004).
Oregan, B. and Gratzel, M., "A Low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films." Nature, 353(6346), 737 (1991).
Qu, L. T., Dai, L. M. and Osawa, E., "Shape/size-control led syntheses of metal nanoparticles for site-selective modification of carbon nanotubes." J. Am. Chem. Soc., 128(16), 5523 (2006).
Park, B. K., Jeong, S., Kim, D., Moon, J., Lim, S., et al., "Synthesis and size control of monodisperse copper nanoparticles by polyol method." J. Colloid Interface Sci., 311(2), 417 (2007).
Park, D., Lee, D. S., Park, J. M., Chun, H. D., Park, S. K., et al., "Metal recovery from electroplating wastewater using acidophilic iron oxidizing bacteria: Pilot-scale feasibility test." Ind. Eng. Chem. Res., 44(6), 1854-1859 (2005).
Peters, K. F., Cohen, J. B. and Chung, Y. W., "Melting of Pb nanocrystals." Phys. Rev. B, 57(21), 13430 (1998).
Pigaga, A., Selskis, A., Pakstas, V., Butkiene, R. and Juskenas, R., "Simultaneous decontamination of two copper ligand-containing solutions by mixing and precipitation." Hydrometallurgy, 79(3-4), 89 (2005).
Pileni, M. P., "Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains." J. Phys. Chem. C, 111(26), 9019 (2007).
Premkumar, T. and Geckeler, K. E., "A green approach to fabricate CuO nanoparticles." J. Phys. Chem. Solids, 67(7), 1451 (2006).
Roth, A., "Vacuum technology." Amsterdam, Elsevier Science B.V., 3rd Ed. (1990).
Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R. and Subramoney, S., "Single-crystal metals encapsulated in carbon nanoparticles." Science, 259(5093), 346 (1993).
Rupp, J. and Birringer, R., "Enhanced specific-heat-capacity (CP) measurements (150-300 K) of nanometer-sized crystalline materials." Phys. Rev. B, 36(15), 7888 (1987).
Salzemann, C., Lisiecki, I., Brioude, A., Urban, J. and Pileni, M. P., "Collections of copper nanocrystals characterized by different sizes and shapes: Optical response of these nanoobjects." J. Phys. Chem. B, 108(35), 13242 (2004).
Sanchez-Iglesias, A., Pastoriza-Santos, I., Perez-Juste, J., Rodriguez-Gonzalez, B., de Abajo, F. J. G., et al., "Synthesis and optical properties of gold nanodecahedra with size control." Adv. Mater., 18(19), 2529 (2006).
Sapra, S., Poppe, J. and Eychmuller, A., "CdSe nanorod synthesis: A new approach." Small, 3(11), 1886 (2007).
Sapsford, K. E., Berti, L. and Medintz, I. L., "Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations." Angew. Chem.-Int. Edit., 45(28), 4562 (2006).
Schaper, A. K., Hou, H., Greiner, A., Schneider, R. and Phillipp, F., "Copper nanoparticles encapsulated in multi-shell carbon cages." Appl. Phys. A-Mater. Sci. Process., 78(1), 73 (2004).
Schilling, P. J., He, J. H. and Ma, E., "EXAFS study of ball-milled elemental nanocrystalline powders." J. Phys. IV, 7(C2), 1221 (1997).
Schmid, G., Metals in "Nanoscale materials in chemistry." K. J. Klabunde. New York, John Wiley & Sons, 15 (2001).
Schmidt, M., Kusche, R., von Issendorff, B. and Haberland, H., "Irregular variations in the melting point of size-selected atomic clusters." Nature, 393(6682), 238 (1998).
Shammugam, S., Gabashvili, A., Jacob, D. S., Yu, J. C. and Gedanken, A., "Synthesis and characterization of TiO2@C core-shell composite nanoparticles and evaluation of their photocatalytic activities." Chem. Mat., 18(9), 2275 (2006).
Shang, L., Yin, J. Y., Li, J., Jin, L. H. and Dong, S. J., "Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma." Biosens. Bioelectron., 25(2), 269 (2009).
Shyjumon, I., Gopinadhan, M., Ivanova, O., Quaasz, M., Wulff, H., et al., "Structural deformation, melting point and lattice parameter studies of size selected silver clusters." Eur. Phys. J. D, 37(3), 409 (2006).
Sopyan, I., Watanabe, M., Murasawa, S., Hashimoto, K. and Fujishima, A., "An efficient TiO2 thin-film photocatalyst: Photocatalytic properties in gas-phase acetaldehyde degradation." J. Photochem. Photobiol. A-Chem., 98(1-2), 79 (1996).
Stern, E. A., Newville, M., Ravel, B., Yacoby, Y. and Haskel, D., "The UWXAFS analysis package-philosophy and details." Physica B, 209(1-4), 117 (1995).
Sun, B. L., Jiang, X. H., Dai, S. X. and Du, Z. L., "Single-crystal silver nanowires: Preparation and surface-enhanced Raman scattering (SERS) property." Mater. Lett., 63(29), 2570 (2009).
Sun, X. H., Zheng, C. M., Zhang, F. X., Li, L. D., Yang, Y. L., et al., "Beta-cyclodextrin-assisted Synthesis of Superparamagnetic Magnetite Nanoparticles from a Single Fe(III) Precursor." J. Phys. Chem. C, 112(44), 17148 (2008).
Sun, X. M. and Li, Y. D., "Ag@C core/shell structured nanoparticles: Controlled synthesis, characterization, and assembly." Langmuir, 21(13), 6019 (2005).
Sun, Y. G. and Xia, Y. N., "Shape-controlled synthesis of gold and silver nanoparticles." Science, 298(5601), 2176 (2002).
Szejtli, J., "Introduction and general overview of cyclodextrin chemistry." Chem. Rev., 98(5), 1743 (1998).
Szente, R. N., Bender, O. W., Schroeter, R. A. and Garcia, M. G., "Treating electroplating residues with thermal plasmas." JOM-J. Miner. Met. Mater. Soc., 50(7), 32 (1998).
Taiwan EPA, http://www.epa.gov.tw/en/index.aspx.
Tian, Z. Q., Ren, B. and Wu, D. Y., "Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures." J. Phys. Chem. B, 106(37), 9463 (2002).
Underwood, S. and Mulvaney, P., "Effect of the solution refractive-index on the color of gold colloids." Langmuir, 10(10), 3427 (1994).
Utsumi, S., Vallejos-Burgos, F. E., Carnpos, C. M., Garcia, X., Gordon, A. L., et al., "Preparation and characterization of inexpensive heterogeneous catalysts for air pollution control: Two case studies." Catal. Today, 123(1-4), 208 (2007).
Venkatesan, S. and Begum, K., "Removal of copper and zinc from aqueous solutions and industrial effluents using emulsion liquid membrane technique." Asia-Pac. J. Chem. Eng., 3(4), 387 (2008).
Wang, H. C., Wang, H. P., Peng, C. Y., Liu, H. L. and Huang, H. L., "X-ray absorption spectroscopic studies of As-humic substances in the ground water of the Taiwan blackfoot disease area." Bullet. Environ. Contamin. Toxic., 71, 798 (2003).
Wang, Z., Liu, G. C., Fan, Z. F., Yang, X. T., Wang, J. X., et al., "Experimental study on treatment of electroplating wastewater by nanofiltration." J. Membr. Sci., 305(1-2), 185 (2007).
Wei, X. W., Zhu, G. X., Xia, C. J. and Ye, Y., "A solution phase fabrication of magnetic nanoparticles encapsulated in carbon." Nanotechnology, 17(17), 4307 (2006).
Weitz, D. A., Garoff, S., Gersten, J. I. and Nitzan, A., "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface." J. Chem. Phys., 78(9), 5324 (1983).
Wilde, G. and Rosner, H., "Stability aspects of bulk nanostructured metals and composites." J. Mater. Sci., 42(5), 1772 (2007).
Williams, D. B. and Carter, C. B., "Transmission electron microscope: A textbook for materials science." New York, Springer, 2nd Edition Ed. (2009).
Xie, F. C., Cai, T. T., Ma, Y., Li, H. Y., Li, C. C., et al., "Recovery of Cu and Fe from printed circuit board waste sludge by ultrasound: Evaluation of industrial application." J. Clean Prod., 17(16), 1494 (2009).
Xu, J. Z., Xu, S., Geng, J., Li, G. X. and Zhu, J. J., "The fabrication of hollow spherical copper sulfide nanoparticle assemblies with 2-hydroxypropyl-beta-cyclodextrin as a template under sonication." Ultrason. Sonochem., 13(5), 451 (2006).
Yang, C. C. and Li, S., "Size-dependent phase stability of silver nanocrystals." J. Phys. Chem. C, 112(42), 16400 (2008).
Yang, G. H., Tan, L., Yang, Y. Y., Chen, S. W. and Liu, G. Y., "Single electron tunneling and manipulation of nanoparticles on surfaces at room temperature." Surf. Sci., 589(1-3), 129 (2005).
Yang, Q. and Kocherginsky, N. M., "Copper recovery and spent ammoniacal etchant regeneration based on hollow fiber supported liquid membrane technology: From bench-scale to pilot-scale tests." J. Membr. Sci., 286(1-2), 301 (2006).
Yang, Z. Q. and Klabunde, K. J., "Synthesis of nearly monodisperse palladium (Pd) nanoparticles by using oleylamine and trioctylphosphine mixed ligands." J. Organomet. Chem., 694(7-8), 1016 (2009).
Yoshikawa, M., Mori, Y., Obata, H., Maegawa, M., Katagiri, G., et al., "Raman scattering from nanometer-sized diamond." Appl. Phys. Lett., 67(5), 694 (1995).
You, C. C., Miranda, O. R., Gider, B., Ghosh, P. S., Kim, I. B., et al., "Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors." Nat. Nanotechnol., 2(5), 318 (2007).
Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C. and Eller, M. J., "Multi-scattering calculations of X-ray absorption spectra." Phys. Rev. B, 52(4), 2995 (1995).
Zhang, J., Han, H. W., Wu, S. J., Xu, S., Yang, Y. et al., "Conductive carbon nanoparticles hybrid PEO/P(VDF-HFP)/SiO2 nanocomposite polymer electrolyte type dye sensitized solar cells." Solid State Ion., 178(29), 1595 (2007).
Zhang, W., Qiao, X. and Chen, J., "Synthesis of silver nanoparticles-Effects of concerned parameters in water/oil microemulsion." Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 142(1), 1 (2007).
Zhang, X. F., Yin, H. B., Cheng, X. N., Hu, H. F., Yu, Q., et al., "Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles." Mater. Res. Bull., 41(11), 2041 (2006).
Zhong, C. J. and Maye, M. M., "Core-shell assembled nanoparticles as catalysts." Adv. Mater., 13(19), 1507 (2001).
Zhou, S. H., Varughese, B., Eichhorn, B., Jackson, G. and McIlwrath, K., "Pt-Cu core-shell and alloy nanoparticles for heterogeneous NOx, reduction: Anomalous stability and reactivity of a core-shell nanostructure." Angew. Chem.-Int. Edit., 44(29), 4539 (2005).
Zhu, H. T., Zhang, C. Y. and Yin, Y. S., "Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size." Nanotechnology, 16(12), 3079 (2005).
Zong, R. L., Zhou, J., Li, B., Fu, M., Shi, S. K., et al., "Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide." J. Chem. Phys., 123(9), 5 (2005).
校內:2020-01-01公開