| 研究生: |
彭湘雲 Peng, Hsiang-yun |
|---|---|
| 論文名稱: |
以全套管切削工法拆除既有地下結構之振動問題研究 A Study on the Vibration Induced by Demolition of Existing Underground Structures Using All-Casing Cutting Method |
| 指導教授: |
柯永彥
Ko, Yung-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 全套管切削工法 、既有地下結構物 、地傳振動 、現地量測 、頻譜分析 |
| 外文關鍵詞: | all-casing cutting methods, existing underground structures, ground-borne vibration, on-site measurements, spectrum analysis |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全套管切削工法近年常被應用於拆除既有地下結構物,本研究選定一處採用大口徑全迴旋式全套管切削工法拆除地下連續壁與地下室底板之場址,針對切削地下結構、取出切除物與土壤、以及破除難以取出之切除物等作業所造成之地傳振動(ground-borne vibration)進行現地量測,並透過頻譜分析(spectral analysis)探討其振動量與頻率特性。切削作業多屬較低頻且具寬頻特性,主要顯著頻率位於6~8 Hz;重錘衝擊作業造成的振動量為整個拆除過程中最大者,可達約0.8 cm/s,垂直向主要顯著頻率在7.5~11 Hz區間,水平方向大多位於20~28 Hz的中高頻區段;抓斗夾取作業因拉扯角度與力道不一,所引致振動頻譜特性具隨機性而較無一致性;沖筒取土主要顯著頻率為3~4 Hz,振動量僅次於重錘衝擊作業。另外亦擇一採用油壓破碎機打除混凝土鋪面之場址進行施工振動量測,其在高頻區段振動量顯著,甚至超過前述重錘衝擊所造成者,且為相對窄頻之振動。進一步搭配常用之振動容許準則進行影響評估,分別為針對結構物完整性的USBM RI 8507與DIN 4150-3準則,以及針對精密儀器等振動敏感設施的VC準則。結果顯示,全套管切削拆除之振動均低於USBM RI 8507準則,唯重錘衝擊之垂直向振動值接近灰泥牆建材之臨界值;根據DIN 4150-3準則,僅重錘衝擊之垂直向振動值接近或略超過一般住宅建築物之容許值;另外就VC準則而言,前述振動於大部分頻段均超過VC-E,重錘衝擊與鋪面破碎在部分頻段甚至超過VC-A,對振動敏感設施可能有所干擾。綜合以上可知,雖全套管切削拆除工程中大部分作業之振動並不至於影響鄰近結構之完整性,但對敏感設施仍有潛在風險,相關研究成果可做為全套管切削施工振動影響評估與都會區既有地下結構拆除方式選擇之參考。
A construction site employing the large-diameter all-casing cutting method with a full slewing technique to demolish existing underground structures was selected. On-site measurements were conducted on the ground-borne vibrations generated during different operations of the demolition work. The vibrations were characterized through spectrum analysis. The cutting of structures featured low-frequency and broadband vibrations with predominant frequencies ranging from 6 to 8 Hz. The impact of drop hammer produced relatively high-frequency vibrations that had the highest magnitudes among all the demolition operations. The vibrations caused by removing the cut pieces using a grab exhibited random and inconsistent spectral content. Extraction soil by a cylinder caused vibration levels preceded only by the hammer impact with a predominant frequency of 3-4 Hz. The possible influence on the neighboring structures and vibration-sensitive facilities were then evaluated based on several commonly used vibration criteria. Only the vertical vibration levels induced by hammer impact approached or slightly exceeded permissible limits for the structural integrity of typical residential buildings. However, the vibrations of all operations may pose potential risks to nearby vibration-sensitive facilities. The findings of this study may serve as references for assessing the vibration impact of the all-casing cutting method and for selecting appropriate demolition techniques for existing underground structures in urban areas.
1. 內政部建築研究所,「既有建築物地下室拆除重建工法之研究」,內政部建築研究所,台北,2020。
2. 內政部,「建築物耐震設計規範及解說」,內政部 113.3.11 台內國字第 1130801422 號令修正,2024。
3. 加基工程有限公司,「高雄市三民區灣內段_763地號_地基調查工作報告書」,2023。
4. 行政院環境保護署,「環境振動評估模式技術規範」,環署綜字第0920002576號公告訂定,2003。
5. 杜東岳,「施工地盤振動特性與數值模擬」,國立中央大學土木工程研究所,博士論文,2010。
6. 李百堂、黃宇中、王文賢、黃少琪、章俊隆、楊長江,「加速調節振動更式校正系統量測不確定度評估」,中華民國振動與噪音工程學會論文集,1-10頁,1995。
7. 社團法人日本環境測定分析協會編輯委員會,「環境計量必攜」,丸善株式會社出版事業部,東京,2000。
8. 林培元、張登貴、何樹根、徐明志、荷世平,「都市更新中舊地下室再利用之策略與技術案例介紹」,地工技術,第147期,13-24頁,2016。
9. 柯永彥、黃俊鴻、陳慧珊,「於煤灰地盤施打擠壓砂樁之地盤振動特性」,中國土木水利工程學刊,第26卷,第4期,323-334頁,2014。
10. 高秋振、徐明志、施志鴻,「場鑄基樁施工管控重點探討」,地工技術,第107期,27-40頁,2006。
11. 陳冠羽、黃俊鴻、林大鈞、謝致德,「卵礫石層全套管基樁施工引致之地盤振動」,中國土木水利工程學刊,第36卷,第2期,137-149頁,2024。
12. 黃俊鴻、鄧源昌、歐怡岑、柯永彥,「垂直孔爆炸振動試驗之量測與分析」,中國土木水利工程學刊,第29卷,第3期,183-194頁,2017。
13. Amick, H., & Gendreau, M. Construction vibrations and their impact on vibration-sensitive facilities. Paper presented at ASCE Construction Congress 6, Orlando, Florida, 2000.
14. Amick, H., Gendreau, M., Busch, T., & Gordon, C. Evolving criteria for research facilities: Vibration. In Proceedings of SPIE Conference 5933: Buildings for Nanoscale Research and Beyond. San Diego, CA, 16-28, 2005.
15. Amick, H., & Gordon, C. Specifying and interpreting a site vibration evaluation. Microcontamination, 42–52, 1989.
16. Andrews, J., Buehler, D., Gill, H., et al. Transportation and construction vibration guidance manual. Sacramento, CA: California Department of Transportation, 2013.
17. Cao, J., Huang, W., Zhao, T., et al. An enhanced excavation equipment classification algorithm based on acoustic spectrum dynamic feature. Multidimensional Systems and Signal Processing, 28(3), 921–943, 2017.
18. DIN 4150-3. Vibrations in buildings—Part 3: Effects on structures. Berlin: Deutsches Institut für Normung e.V., 2016.
19. Dowding, C. H. Construction vibrations. Upper Saddle River, NJ: Prentice-Hall, 1996.
20. Gordon, C. G. Generic criteria for vibration-sensitive equipment. In Proceedings of SPIE Conference on Vibration Control and Metrology. San Jose, California, 71-85, 1991.
21. International Standards Organization. Guide to the evaluation of human exposure to vibration and shock in buildings (1 Hz to 80 Hz) (Draft Proposal ISO 2631/DAD1), 1981.
22. Institute of Environmental Sciences and Technology. IEST-RP-NANO201.1: Measuring and reporting vibrations in advanced-technology facilities (WG-NANO201). Schaumburg, IL: IEST, 2024.
23. Miller, G. F., & Pursey, H., On the partition of energy between elastic waves in a semi-infinite solid, The Royal Society publishing, Vol. 233, Issue 1192, 1995.
24. Ohta, Y., Kagami, H., Goto, N., & Kudo, K. Observation of 1- to 5-second microtremors and their application to earthquake engineering. Part I: Comparison with long-period accelerations at the Tokachi-Oki earthquake of 1968. Bulletin of the Seismological Society of America, 68(3), 767–779, 1978.
25. Svinkin, M. R. Environmental vibration problems during construction / Problemes de vibration environnementale pendant la construction. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering (pp. 2453–2456). Millpress Science Publishers/IOS Press, 2005–2006.
26. Svinkin, M. R. Minimizing construction vibration effects. Practice Periodical on Structural Design and Construction, ASCE, 9(2), 108–115, 2004.
27. Svinkin, M. R. Engineering vibration investigation in geophysical exploration at construction sites. In Proceedings of Geo-Frontiers 2005. Austin, Texas: ASCE, 2005.
28. Siskind, D. E., Stagg, M. S., Kopp, J. W., & Dowding, C. H. Structure response and damage produced by ground vibration from surface mine blasting. USBM RI 8507, Washington, DC, 1980.
29. Ungar, E. E., & White, R. W. Footfall-induced vibrations of floors supporting sensitive equipment. Sound and Vibration, 13(10), 10–13, 1979.
30. Ungar, E. E., & Gordon, C. G. Vibration challenges in microelectronics manufacturing. The Shock and Vibration Bulletin, 53(Pt. 1), 51–58, 1983.
31. Wiss, J. F. Construction vibrations: State-of-the-art. Journal of Geotechnical Engineering Division, ASCE, 107(2), 167–181, 1981.
校內:2029-08-01公開