簡易檢索 / 詳目顯示

研究生: 王景平
Wang, Jing- Ping
論文名稱: 具螯合性聚乙烯亞胺化製備擬海膽狀碳材與其燃料電池觸媒層之應用
Synthesis and Characterization of Sea Urchin-like Carbon and its application to Direct Fuel Cell Catalyst
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 96
中文關鍵詞: 奈米碳管海膽狀碳材直接甲醇燃料電鉑奈米粒子
外文關鍵詞: direct methanol fuel cells, Pt nanoparticle, tetraethylentriamine, carbon nanotube, chemical vapor deposition
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以酸化處理一般碳黑(Lamp Black)再與聚乙烯胺高分子(Polyethylenimine)反應,改質處理後成為具有金屬螯合性之碳材,以含浸法製備鐵奈米粒子於碳材上,再以化學氣相沉積法於碳材生長奈米碳管合成出新穎之海膽狀碳材。以四點碳針法與氮氣之吸附脫附曲線測量到其導電度與表面積有著相當顯著的成長。
    於應用在燃料電池觸媒層之研究上,以聚乙烯亞胺之聚丙烯高分子 D400 作為高分子保護劑,以化學還原法於水相製備鉑奈米粒子於各不同型態之碳材上,並改變不同的高分子保護劑量以探討其對鉑奈米粒子型態上之影響。由穿透式電子顯微鏡結果顯示[N]/[Pt]= 60時,有著最小的平均粒徑。接下來之熱處理的目的在於高分子裂解以達到活化觸媒表面之效果。
    循環伏安法(cyclic voltammetry, CV)用來評估觸媒對於甲醇氧化之活性。電化學吸附面積(EAS area)分析上,海膽狀碳材可提供較原先碳材5倍以上之電化學活性表面績。電化學活性而言,鉑系觸媒擔載於海膽狀碳材皆有卓越的表現相較於原先未處理過之碳材;相較於商用觸媒(ETEK),最佳可達其1.5倍之甲醇氧化的活性。
    燃料電池應用上,鉑奈米粒子擔載於海膽狀碳材亦有優越的成效。於低溫下其效能可優於一般商用觸媒,高溫操作下其低電阻特質於高電流區域顯示著相較於商用觸媒明顯較緩的效能衰退現象;比較於陽極電極,鉑奈米粒子擔載於海膽狀碳材方面有著更適用於陰極材料的表現。

    A fresh type of carbon support, sea urchin-like carbon (UC), was synthesized by chemical vapor deposition (CVD) growing carbon nanotubes (CNTs) under acetylene gas onto the iron catalysts, well-distributed carbon spheres, which was prepared by a chelating reagent, tetraethylentriamine (TETA), was reacted with acyl chloride-functionalized carbon as prepared. Controlled the time of CVD, the shape of UC material would be changed. Embedding carbon nanotube, the properties of electro-conductivity and surface areas of the UC materials can be improved.
    Recently, a hydrophilic polymer, polyoxypropylenediamine (D400), was used as a stabilizer to prepare Pt colloids, through the reduction of citrate and then heat-treated in situ to prepare Pt nanoparticles. X-ray photoelectron spectroscopy revealed that metallic Pt0 is the predominant species in all Pt catalysts after calcinating. The Pt/C catalysts were prepared by changing the amine molar ratios of D400 to chloroplatinic acid, i.e. [N]/[Pt] = 20, 30, 40 and 60 onto the UC supports. The results appeared the Pt nanoparticle size decreasing with increasing the ratio of [N]/[Pt]. The real catalyst loading onto the different carbon supports could be obtained to compare with identical loading by thermogram analysis.
    The electrochemical active areas (EAS) and electrochemical activities of the catalysts were evaluated by cyclic voltammetry. The EAS of Pt/UC catalyst (115.5 m2/g, UC-L) was more then Pt/ original carbon black (LB) catalyst (19 m2/g) and E-TEK (Pt/C, 20wt.%) catalyst (100.6 m2/g). Moreover, the methanol electro-oxidation of Pt/UC was superior to Pt/LB. The smaller Pt nanoparticles, prepared under the [N]/[Pt]= 60, onto the UC support, the peak current density ( If, 956.8 mA cm-2) was 1.5 times of E-TEK catalyst (Pt/C, 20wt.%).
    Application for DMFC, the Pt/UC also displayed the great performance compared with different morphology of Pt/C catalysts. The power density of Pt/UC-L showed greater than E-TEK catalyst (Pt/C, 20wt.%) in the high current region. The Pt nanoparticle sizes and carbon supports also exhibited that catalyst activities toward methanol electro-oxidation and conductivity affected the single cell performance. Besides, the research on the Pt/UC catalyst using for a cathode electrode was discussed in this study.

    Abstract I Abstract (Chinese) III Acknowledgement IV Legends to Tables V Legends to Figures VI Legends to Scheme IX Chapter 1. Introduction 1 1.1 Concept of Fuel Cells 1 1.1.1 General Concept 1 1.1.2 Fuel Cell Types 2 1.1.3 Benefits of Fuel Cells[2] 5 1.1.4 Fuel Cell Basics Application[7] 7 1.2 Fundamental Aspect of DMFCs 8 1.2.1 Overall DMFC reaction 8 1.2.2 Electrocatalysts 10 1.2.3 Solid Polymer Electrolyte: Proton Exchange Membrane 12 1.2.4 Catalyst support 14 1.2.5 Improvements of Materials for DMFCs 15 Chapter 2. Theorems 17 2.1 Chemical vapor deposition, CVD 17 2.2 Cyclic Voltammeter, CV [44-49] 24 2.2.1 Electrochemical Active Surface Area, EAS area [54,55] 31 2.3 Transmission Electron Microscopy, TEM [63] 37 2.4 X-ray diffraction, XRD [64] 39 Chapter 3. Experiment Section 41 3.1 Materials 41 3.2 Sample Preparation 41 3.2.1 Preparation of rich-carboxyl carbon 41 3.2.2 Preparation of modification of carbon 42 3.2.3 Preparation of Sea Urchin-like carbon 43 3.2.4 Syntheses of Pt nanocatalysts 44 3.2.5 Preparation of Working Electrode 44 3.2.6 Preparation of Membrane Electrode Assembly (MEA) 45 3.3 Characterizations. 47 Chapter 4. Results and Discussion 51 4.1 Qualitative analysis of modified surface on Lamp Black carbon 53 4.2 Morphology of UC materials 54 4.3 Quantitative analysis of UC materials 56 4.4 Morphology of Pt deposition onto UC support 57 4.5 The Study of X-ray Diffraction (XRD) 60 4.6 The study of TG analysis 62 4.6.1 Thermal Decomposition of as-prepared materials 62 4.6.2 Real Loading Weight Percents of Pt/C by TG analysis 63 4.7 Electrochemical Analysis 67 4.7.1 Estimation of Electrochemical Active Surface Areas (EAS). 67 4.7.2 Evaluation of Methanol Electro-oxidation Activity. 70 4.8 Single Cell Performances 74 Chapter 5. General Conclusion 84 References 86 Autobiography 96

    [1] Appleby, A.J. and Foulkes, F.R. Fuel cell Handbook, Van Nostrand Reinhold, New York, 1989.
    [2] (a) James, L.; Andrew, D. Fuel Cell systems Explained, John Weiley, England, 2000. (b) James, L.; Andrew, D. Fuel Cell systems Explained, John Weiley, England, 2003.
    [3] Bolmen, L. J.; M. J., and Megerwa M. N. Fuel Cell Systems,
    Plenum Press, New York and London, 1993.
    [4] Acres G. J. K., Frost J. G., Hards G. A., Potter R. J., Ralph T. R.,
    Thompsett D., Burstein G. T., and Hutchings G. J. Electrocatalysts
    for Fuel Cells, Catalysis Today, 1997, 38, 393.
    [5] Stonehart O. J. Apl. Electrochem. 1992, 22, 995.
    [6] Chen, P.; Wu, X.: Lin, J. and Tan, K. L. Science 1999, 285, 91.
    [7] Malhotra, S. and Datta, R. J. Electrochem. Soc 1997, 144, 23.
    [8] Parsons, R.; Van der Noot, T. J. Electroanal. Chem. 1988, 257, 9.
    [9] Bagotzky, V. S.; Vassiliev, Yu. B.; Khazova O. A. J. Electroanal. Chem. 1977, 81, 229.
    [10] (a) Neergat, M.; Leveratto, D.; Stimming, U. Fuel Cells 2002, 2, 25. (b) Sarma, L. S.; Lin, T. D.; Tsai, Y. W.; Chen, J. M.; Huang, B. J. J. Power Sources 2005, 139, 44. (c) Xue, X.; Lu, T.; Liu, C.; Xing, W. Chem. Comm. 2005, 1601.
    [11] (a) Manzo-Robledo, A.; Boucher, A. C.; Pastor, E.; Alonso-Vante, N. Fuel Cells 2002, 2, 109. (b) Jiang, L.; Sun, G.; Zhou, Z.; Zhou, W.; Xin, Q. Catal. Today 2004, 665, 93. (c) Lamy, C.; Rousseau, S.; Belgsir, E. M.; Coutanceau, C.; Léger, J. M. Electrochim. Acta 2004, 49, 3901. (d) Rivera-Casado, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruña, H. D. J. Am. Chem. Soc. 2004, 126, 4043.
    [12] Gurau, B.; Viswanathan, R.; Liu, R.; Lafrenz, T. J.; Ley, K. L.; Smotkin, E. S.; Reddington, E.; Sapienza, A.; Chan, B. C.; Mallouk, T. E.; Sarangapani, S. J. Phys. Chem. B 1998, 102, 9997.
    [13] (a) Gokagac, G.; Léger, J. M.; Hahn, F.; Lamy, C. J. Electrochem. Soc. 2001, 4, 174. (b) Samjeské, G.; Wang, H.; Löffler, T.; Baltruschat, H. Electrochim. Acta 2002, 47, 3681.
    [14] (a) Yu, P.; Pemberton, M.; Plasse, P. J. Power Sources 2005, 144, 11. (b) Neto, A. O.; Vasconcelos, T. R. R.; Da Silva, R. W. R. V.; Linardi, M.; Spinacé, E. V. J. Appl. Electrochem. 2005, 35, 193. (c) Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R. J. Electroanal. Chem. 2005, 580, 145. (d) Xiong, L.; Kannan, A. M.; Manthiram, A. Electrochem. Commun. 2002, 4, 898.
    [15] (a) Shukla, A. K.; Neergat, M.; Bera, P.; Jayaram, V.; Hegde, M. S. J. Electroanal. Chem. 2001, 504, 111. (b) Deivaraj, T. C.; Chen, W.; Lee, J. Y. J. Mater. Chem. 2003, 13, 2555.
    [16] Chan, K. Y.; Ding, J.; Ren, J.; Cheng, S.; Tsang, K. Y. J. Mater. Chem. 2004, 14, 505.
    [17] Bönnemann, H.; Richards, R. M. Eur. J. Inorg. Chem. 2001, 2455.
    [18] (a) Curtis, A. C.; Duff, D. G.; Edwards, P. P.; Jefferson, D. A.; Johnson, B. F. G.; Kirkland, A. I.; Wallace, A. S. J. Phys. Chem. 1988, 92, 2270. (b) Wang, Y.; Ren, J.; Deng, K.; Gui, L.; Tang, Y. Chem. Mater. 2000, 12, 1622.
    [19] (a) Shen, P. K.; Tian, Z. Electrochim. Acta, 2004, 49, 3107. (b) Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun and Q. Xin, Chem. Commun. 2003, 394.
    [20] Zhang, X.; Chan, K. Y. Chem. Mater. 2003, 15, 451.
    [21] Butler, G. B.; Oriscoll, K. F.; Wilkes, G. L. JMS-Rev. Macromol. Chem. Phys. 1994, C34(3), 325.
    [22] (a) Che, G.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Nature 1998, 393, 346. (b) Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C.; Yan, Y. Nano Lett. 2003, 4, 345. (c) Matsumoto, T.; Komatsu, T.; Arai, K.; Yamazaki, T.; Kijima, M.; Shimizu, Y.; Nakamura, J. Chem. Comm. 2004, 840. (d) Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q. J. Phys. Chem. B 2003, 107, 6292. (e) Liu, Z.; Lin, X.; Lee, J. Y.; Zhang, W.; Han, M.; Gan, L. M. Langmuir 2002, 18, 4054. (f) Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. J. Phys. Chem. B 2002, 106, 760. (g) Han, K. I.; Lee, J. S.; Park, S. O.; Lee, S. W.; Park, Y. W.; Kim, H. Electrochim. Acta 2004, 50, 787. (h) Sun, C. L.; Chen, L. C.; Su, M. C.; Hong, L. S.; Chyan, O.; Hsu, C. Y.; Chen, K. H.; Chang, T. F.; Chang, L. Chem. Mater. 2005, 17, 3749. (i) Tang, H.; Chen, J.; Nie, L.; Liu, D.; Deng, W.; Kuang, Y.; Yao, S. J. Colloid Interface Sci. 2004, 269, 26.
    [23] Kim, C.; Kim, Y. J.; Kim, Y. A. J. Appl. Phys. 2004, 96, 10.
    [24] Li, W.; Wang, X. J. Phys. Chem. B., 2006, 110, 15353.
    [25] (a) Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743. (b) Toebes, M. L.; van der Lee, M. K.; Tang, L. M.; Huis in ‘t Veld, M. H.; Bitter, J. H.; Jos van Dillen, A.; de Jong, K. P. J. Phys. Chem. B. 2004, 108, 11611.
    [26] (a) Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G. J. Am. Chem. Soc. 2002, 124, 9382. (b) Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169. (c) Raghuveer, V.; Manthiram, A. J. Electrochem. Soc. 2005, 152, A1504.
    [27] (a) Hamnett, A. Catal. Today 1997, 38, 445. (b) Eikerling, M.; Loselevich, A. S.; Kornyshev Fuel Cells 2004, 4, 131. (c) Marković N. M.; Schmidt, T. J.; Stamenković, V.; Ross, P. N. Fuel Cells 2001, 1, 105.
    [28] Yuanzhe, P.; Kwangjin, A.; Taekyung, Y. and Taeghwan, H. J. Mater. Chem. 2006, 16, 2984.
    [29] Cheng, H. M.; Dresselhaus, M. S. Science 2000, 287, 593.
    [30] (a) S. Iijima Nature 1991, 354, 56. (b) A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti and V. G. Ralchenko Science 1998, 282, 897. (c) G. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin Nature 1998, 393, 346. (d) R. Ryoo, S. H. Joo, M. Kruk and M. Jaroniec Adv. Mater. 2001, 13, 677. (e) J. Lee, S. Han and T. Hyeon J. Mater. Chem. 2004, 14, 478. (f) S. Jun.; S. H. Joo.; R. Ryoo.; M. Kruk,; M. Jaroniec; Z. Liu; T. Ohsuna and O. Terasaki J. Am. Chem. Soc. 2000, 122, 10712. (g) M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo J. Phys. Chem. B 2000, 104, 7960; (h) J. Lee, K. Sohn and T. Hyeon J. Am. Chem. Soc. 2001, 123, 5146; (i) C. Liang; K. Hong; G. A. Guiochon; J. W. Mays and S. Dai Angew. Chem. Int. Ed. 2004, 43, 5785 (j) Z. Li, G. D. Del Cul, W. Yan, C. Liang and S. Dai J. Am. Chem. Soc. 2004, 126, 12782; (k) T. Yamamoto, A. Endo, T. Ohmori and M. Nakaiwa Carbon 2005, 43, 1231 (l) Z. Ma, T. Kyotani and A. Tomita Chem. Commun. 2000, 2365 (m) T. Kyotani Carbon 2000, 38, 269 (n) K. Matsuoka; Y. Yamagishi; T. Yamazaki; N. Setoyama; A. Tomita; T. Kyotani Carbon 2005, 43, 876 (o) J. Fan, M. Yudasaka; D. Kasuya, T. Azami, R. Yuge, H. Imai, Y. Kubo and S. Iijima J. Phys. Chem. B 2005, 109, 10756 (p) Q. H. Yang, W. H. Xu; A. Tomita and T. Kyotani J. Am. Chem. Soc. 2005, 127, 8956 (q) S. B. Yoon; G. S. Chai; S. K. Kang; J. S. Yu, K. P. Gierszal; M. Jaroniec J. Am. Chem. Soc. 2005, 127, 4188.
    [31] (a) Schropp, R.E.I.; B. Stannowski, A.M.; Brockhoff, P.A.T.T. van Veenendaal and J.K. Rath. Materials Physics and Mechanics: 73–82. (b) Jaeger, Richard C. Introduction to Microelectronic Fabrication. Prentice Hall, 2002, ISBN 0-201-44494-7. (c) Smith, Donald Thin-Film Deposition: Principles and Practice. 1995, MacGraw-Hill. (d) Dobkin and Zuraw Principles of Chemical Vapor Deposition. 2003, Kluwer. (e) Vacuum Technology, ISO 3529/1-1981
    [32] Hugh O. Pierson Handbook of Chemical Vapor Deposition second edition William Angrew Publishing, Norwich, New York, 1999.
    [33] Spear, K. E.; Thermochemical Modeling of Steady-State CVD Process, Proc. 9th. Int. Conf. on CVD Electrochem. Soc., Pennington, New York, 1984.
    [34] Sherman, A. Chemical Vapor Deposition for Electronics Noyes Publications, New York, 1987.
    [35] Eftekhari, A.; Jafarkhani, Parvaneh; Moztarzadeh, Fathollah Carbon 44, 1343. doi:10.1016/j.carbon., 2006.
    [36] FMPan Lab. http://fmpanlab.twbbs.org/main.htm National Chiao Tung University.
    [37] Ren, Z. F. "Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass". Science 282, 5391, 1105., PMID 9804545, 1998.
    [38] NanoLAb, http://www.nano-lab.com/home.html
    [39] Collins, Philip G.; Phaedon Avouris Scientific American: 67, 68, and 69, 2000.
    [40] Mukul Kumar and Yoshinori Ando Journal of Physics Japan, 2007, 61, 643.
    [41] Boyd, Jade. "Rice chemists create, grow nanotube seeds", Rice University, 2006.
    [42] Monthioux, Marc; Kuznetsov, Vladimir L. Carbon 44. doi:10.1016 / j.carbon., 2006.
    [43] Nanothinx, http://www.nanothinx.com/
    [44] Gosser, D. K.; Cyclic Voltammetry : simulation and analysis of reaction mechanism, VCH Publisher Inc., 1993.
    [45] Bond, A. M.; Broadening Electrochemical Horizons – Principles and Illustration of Voltammetric and Related Techniques, Oxford University Press Inc., New York, 2002.
    [46] Bockris, J. O’M.; Reddy, A. K. N.; Gamboa-Aldeco, M.; Modern Electrochemistry 2nd ed., Kluwer Academic / Plenum Publishers, New York, 2000.
    [47] Wang, J.; Analytical Electrochemistry, 2nd ed., Wiley-VCH, New York, 2000.
    [48] Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons Inc., 2001.
    [49] Bagotzky, V. S.; Fundamentals of Electrochemistry, Plenum Press, New York, 1993.
    [50] Wang, J.; Analytical Electrochemistry, 2nd ed., Wiley-VCH, New York, 2000.
    [51] Salgado, J. R. C.; Antolini, E.; Gonzalez, E. R. J. Power Sources 2004, 138, 56.
    [52] Christensen, P. A.; Hamnett, A.; Techniques and Mechanisms in Electrochemistry, Chapman & Hall, 1994.
    [53] Nicholson, R. S.; Shain, I. Anal. Chem. 1964, 36, 706.
    [54] (a) Vielstich, W.; Lamm, A.; Gasteiger, H. A.; Handbook of Fuel Cells : Fundamentals Technology and Applications, John Wiley & Sons Inc., 2003. (b) Sawyer, D. T.; Sobkowiak, A.; Roberts, J. L. Electrochemistry for Chemists, John Wiley & Sons Inc., 1995.
    [55] (a) Kinoshita, K.; Ferrier, D. R.; Stonehart, P. Electrochim. Acta 1978, 23, 45. (b) Kinoshita, K.; Lundquist, J.; Stonehart, P. J. Catal. 1973, 31, 325.
    [56] Brunnauer, S.; Emmet, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309.
    [57] Trasatti, S.; Petrii, O. A. Pure Appl. Chem. 1991, 63, 735.
    [58] Will, F. J. Electrochem. Soc. 1965, 112, 451.
    [59] (a) Gilman, S. J. Phys. Chem. 1962, 67, 78. (b) Gilman, S.; in Electroanalytical Chemistry – A Series of Advances, A. J. Bard (Ed), Marcel Dekker, New York, 1967. 2, 112.
    [60] Breiter, M.; Kammermeier, H.; Knorr, C. A. Elektrochem. 1956, 60, 37.
    [61] Woods, R. J. Electroanal. Chem. 1974, 49, 217.
    [62] Gilman, S. J. Electroanal. Chem. 1964, 7, 382.
    [63] 陳力俊,材料電子顯微鏡學,國科會精儀中心,1994。
    [64] B. D.Cullity, Elements of X-RAY Diffraction, 2nd edition, Addison- Wesley, 1978.
    [65] Gilman, S. J. Electroanal. Chem. 1964, 7, 382.
    [66] Dimitrios T.; Nikos T.; Alberto B.; Maurizio P. Chem. Rev. 106, 1105-1136, 2006.
    [67] (a) Shen, G.; Bando, Y.; and Lee, C.-J. J. Phys. Chem. B 2005, 109, 10578, (b) Raty, J. Y.; Gygi, F.; Galli, G. Phys. ReV. Lett. 2005, 95, 096103, (c) Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. L. Nano Lett. 2006, 6, 449.
    [68] Technical Note Pine Research Instrumentation, 2005-01.
    [69] Li, J.; Ma, L.; Lu, C. et al. Ind. Eng. Chem. Res. 2005, 44, 5478.
    [70] Liu, Z.; Ling, X. Y.; Lee, J. Y.; Su, X.; Gan, L. M. J. Mater. Chem.
    2003, 13, 3049.
    [71] Kuo, P.L.; Chen W.F.; Huang, H. Y.; Chang I. C. and Dai, S. A. J. Phys.Chem. B 2006, 110, 3071.
    [72]Miner, R. S.;Namba,S.; Turkevich, J. 7th International Congress on Catalysis; Elsevier: Amsterdam, 1981, 160.
    [73] Aika, K.; Ban, L. L.; Okura, I.; Namba, S.; Turkevich, J. J. Res. Inst. Catal., Hokkaido UniV. 1976, 24, 45.
    [74] Kuo, P. L.; Chen, W. F. J. Phys. Chem. B 2003, 107, 11267.
    [75] Kuo, P. L.; Liang, W. J.; Wang, F. Y. J. Polym. Sci. Pol. Chem. 2003, 41, 1360.
    [76] Manna, A.; Imae, T.; Aoi, K.; Okada, M.; Yogo, T. Chem. Mater. 2001, 13, 1674.
    [77] Kuo, P. L.; Ghosh, S. K.; Liang, W. J.; Hsieh, Y. T. J. Polym. Sci. Pol. Chem. 2001, 39, 3018.
    [78] (a) Ovejero, G.; Sotelo, J. L.; Rodriguez, A.; Diaz, C.; Sanz, R.; Garcia, J. Ind. Eng. Chem. Res.2007, 46, 6449. (b) Li, Z.; Kandel, H. R.; Dervishi, E.; Saini, V.; Xu, Y.; Biris, A. R.; Lupu, D.; Salamo, G. J.; Biris, A. S. Langmuir 2008, 24, 2655.
    [79] Xu, L.; Zhang, W.; Ding, Y.; Peng, Y.; Zhang, S.; Yu, W.; Qian, Y. J. Phys. Chem. B.; 2004, 108, 10859.
    [80] Banks, C. E.; Davies, T. J.; Wildgoose, G. G. and Compton, R. G. Chem. Commum 2005, 829.
    [81] (a) Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem. Res. 2001, 34, 3, 181. (b) Zhao, M.; Crooks, R. M. Chem. Mater. 1999, 11, 3379.
    [82] Cullity, B. D., Elements of X-Ray Diffraction (3rd edition), Addison-Wesley Publishing Co., Inc., Reading, MA, 1956.
    [83] Zhou, Z.; Wang, S.; Zhou, W.; Jiang, L.; Wang, G.; Sun, G.; Zhou, B.; Xin, Q. Phys. Chem. Chem. Phys. 2003, 5, 5485.
    [84] Liu, Z.; Ling, X. Y.; Su, X.; Lee, J. Y. J. Phys. Chem. B 2004, 108, 8234.
    [85] Lu, Q.; Yang, B.; Zhuang, L.; Lu, J. J. Phys. Chem. B 2005, 109, 1715.
    [86] (a) Sun, Y.-P.; Fu, K.; Lin, Y.; Huang, W. Acc. Chem. Res. 2002, 35, 1096; (b) Bom, D.; Andrews, R.; Jacques, D.; Anthony J.; Chen, B.; Meier, M. S.; Selegue, J. P. Nano Lett. 2002, 2, 615
    [87] Banerjea, D. Coordination chemistry, New Delhi, Tata McGraw-Hill Publishing Company Limited, 1993.
    [88] (a) Xiong, L.; Manthiram, A. Electrochim. Acta 2005, 50, 2323. (b) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L. J. Power Sources 2002, 105, 13.
    [89] Liu, Z.; Lee, J. Y.; Chen, W.; Han, M.; Gan L. M. Langmuir 2004, 20, 181.
    [90] Aricò, A. S.; Creti, P.; Kim, H.; Mantegna, R.; Giordano, N.; Antonucci, V. J Electrochem. Soc. 1996, 143, 3950. (84) Ren, X.; Wilson, M. S.; Gottesfeld, S. J. Electrochem. Soc. 1996, 143, L12.
    [91] Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras P. J. Power Sources 2004, 126, 16.
    [92] Ren, X.; Wilson, M. S.; Gottesfeld, S. J. Electrochem. Soc. 1996, 143, L12.
    [93] Wasmus, S.; Küver, A. J. Electroanal. Chem. 1999, 461, 14.
    [94] Ioroi, T.; Yasuda, K.; Siroma, Z.; Fujiwara, N. J. Electrochem. Soc. 2003, 150, A1225.
    [95] Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.; Lukehart, C. M. J. Phys. Chem. B 2001, 105, 8097.
    [96] Wen, Fei; Simon, U. Chem. Mater. 2007, 19, 3370.
    [97] Ioroi, T.; Yasuda, K.; Siroma, Z.; Fujiwara, N. J. Electrochem. Soc. 2003, 150, A1225.
    [98] Yan, S. et al. Electrochimica Acta 2006, 52, 1692.

    下載圖示 校內:2009-07-29公開
    校外:2010-07-29公開
    QR CODE