簡易檢索 / 詳目顯示

研究生: 黃怡蓁
Huang, Yi-Chen
論文名稱: 高能量密度鋰硫電池的功能性氧化物開發與工程設計
The material development and engineering design of functional oxides in high-energy-density lithium-sulfur batteries
指導教授: 鍾昇恆
Chung, Sheng-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 114
中文關鍵詞: 無孔材料氧化物化學吸附電化學硫正極鋰硫電池
外文關鍵詞: nonporous material, metal oxides, chemisorption, electrochemistry, sulfur cathode, lithium-sulfur battery
相關次數: 點閱:40下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的發展,電子裝置對於儲能科技的要求日益上升,大量資源不斷的消耗下,儲能科技須往高能量密度且具高環保性的方向前進,因此成本低廉、具高於傳統鋰離子電池 (150-200 Wh kg-1) 3-5 倍能量密度的鋰硫電池 (2600 Wh kg-1) 成為未來最具潛力的電池之一。雖然鋰硫電池具有許多優點,但在商業化的過程中仍有許多挑戰,鋰硫電池在充放電過程中會產生液態的多硫化物,導致活性物質的流失,本研究將排除孔洞材料對於氧化物之物理吸附,專注於應用氧化物的化學吸附性質作為添加劑放於硫正極中。本研究分為兩個部分,一個部分為探討常用的五種功能性氧化物 (二氧化鈦、氧化鋯、二氧化矽、氧化鋅和氧化鋁) 作為正極添加劑對於鋰硫電池性能之影響,結果為二氧化矽對於多硫化物具強吸附性,而氧化鋁具弱吸附性,並且研究氧化物吸附多硫化物之方法。第二部分利用五種含有不同比例的二氧化矽與氧化鋁的無孔廢土作為添加劑,發現有最高比例的二氧化矽的石英磚是最有效的添加劑,最後利用碳材對石英磚作物理改質,以得到具高化學吸附性、電化學催化性與高導電性的硫電極添加劑。

    Sulfur cathodes are with low-cost trait and high theoretical capacity to 1,675 mA h g-1; however, the generation of dissolved polysulfide during cycling is the main issue hampering its progress. Herein, we apply various functional oxides as additives in sulfur cathode to trap highly-mobile polysulfide and the metal oxides further demonstrate electrocatalytic-conversion capabilities on it. After excluding the contribution of physical adsorption of polysulfide, the adsorption experiments are conducted and the results indicate that SiO2 shows strong chemisorption ability and the presence of it promotes the conversion of high amount of polysulfides. Afterwards, we apply five waste muds with different proportions of SiO2, and one of the waste muds containing highest content of SiO2 demonstrating as the most effective additive in cathode among others. To further enhance the electrochemical performance of battery, we fabricate carbon-coated quartz as additive in cathode, which provides high chemisorption ability towards polysulfides, electrocatalytic capabilities, and high electrical conductivity.

    中文摘要 I EXTENDED ABSTRACT II 致謝 XI 目錄 XII 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1. 1 前言 1 1. 2 研究動機與目的 1 第二章 文獻回顧 3 2. 1 鋰硫電池的簡介 3 2. 1. 1 鋰硫電池的發展 3 2. 1. 2 鋰硫電池的基本電化學原理 5 2. 2 鋰硫電池的材料科學 6 2. 2. 1 固態活性物質的低導電度 6 2. 2. 2 液態活性物質的擴散流失 6 2. 2. 3 活性電極的劣化 7 2. 3 鋰硫電池工程設計 7 2. 3. 1 電極之工程參數 7 2. 3. 2 改善固態活性物質的低導電度 8 2. 3. 3 抑制液態活性物質的流失 9 2. 4 碳改質氧化物之應用 11 2. 4. 1 碳材改質氧化物 11 2. 4. 2 利用球磨改質氧化物材料 12 第三章 實驗方法 14 3. 1 實驗材料 14 3. 2 鋰硫電池電極的製作與電池組裝 14 3. 2. 1 硫碳複合電極 14 3. 2. 2 電解液、正極液的製備 15 3. 2. 3 電池的組裝過程 16 3. 3 材料分析 16 3. 3. 1 X光繞射儀 (X-Ray Diffractometer, XRD) 16 3. 3. 2 掃描式電子顯微鏡與能量分散式光譜儀 (Scanning Electron Microscope, SEM; Energy Dispersive Spectrometer, EDX) 17 3. 3. 3 高解析穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 18 3. 3. 4 比表面積與孔隙度分析儀 (Specific Surface Area and Pore size Distribution Analyzer by Gas Adsorption Method) 19 3. 4 電化學分析 20 3. 4. 1 循環伏安法 (Cyclic Voltammetry, CV) 20 3. 4. 2 恆電流充放電儀 (Battery-testing instrument) 20 3. 4. 3 電化學阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 21 3. 5 化學吸附特性分析 22 3. 5. 1 紫外-可見光-進紅外光分光光譜儀 (UV/ Visible/NIR spectrophotometer) 23 3. 5. 2 微拉曼及微光激發螢光光譜儀 (Micro-Raman and Micro-PL Spectrometer) 24 3. 5. 3 化學分析電子光譜儀 (Electron Spectroscopy for Chemical Analysis) 24 3. 5. 4 化學吸脫附分析儀 (Chemisorption Analyzer) 25 3. 6 包覆碳的廢土製作 26 3. 6. 1 行星式球磨機 (Planetary Ball Mill) 26 第四章 純氧化物對鋰硫電池之結果與討論 27 4. 1 氧化物材料分析 27 4. 1. 1 氧化物之成分分析 27 4. 1. 2 氧化物之孔洞結構分析 29 4. 1. 3 添加氧化物的正極之顯微結構圖 31 4. 2 吸附實驗結果分析 33 4. 2. 1 紫外-可見光-進紅外光分光光譜儀之吸收頻譜 33 4. 2. 2 拉曼分析 35 4. 2. 3 氧化物對於多硫化物之電子能譜儀分析 37 4. 2. 4 脫附實驗 40 4. 3 電化學分析 42 4. 3. 1 循環伏安法 42 4. 3. 2 恆電流充放電儀 49 第五章 陶瓷廢土材料之結果與討論 59 5. 1 純陶瓷廢土材料之材料及電化學分析 59 5. 1. 1 陶瓷廢土材料之顯微結構分析 59 5. 1. 2 陶瓷廢土材料之成分分析 61 5. 1. 3 陶瓷廢土材料之孔洞結構分析 64 5. 1. 4 陶瓷廢土材料的電化學分析 66 5. 1. 5 陶瓷廢土材料的吸附實驗 70 5. 1. 6 陶瓷廢土材料的電子能譜儀分析 73 5. 2 包覆碳的廢土材料之材料性質及電化學分析 77 5. 2. 1 包覆碳的廢土材料之物理分析 77 5. 2. 2 包覆碳的廢土材料之吸附實驗分析 89 5. 2. 3 包覆碳的廢土材料的電化學分析 92 第六章 結論 101 第七章 本研究之創新性、學術性、以及應用性 102 第八章 參考文獻 103

    [1] Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc., 135, 4, 1167-1176, 2013
    [2] Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y. Rechargeable lithium–sulfur batteries. Chem. Rev., 114, 23, 11751, 2014.
    [3] Manthiram, A.; Goodenough, J. B. Layered lithium cobalt oxide cathodes. Nat. Energy, 6, 3, 323, 2021
    [4] Zhang, Q.; Li, F.; Huang, J. Q.; Li, H. Lithium–sulfur batteries: co‐existence of challenges and opportunities. Adv. Funct. Mater., 28, 1804589, 2018.
    [5] Herbert, D.; Ulam, J. Electric dry cells and storage batteries, U.S. Pat., 3, 043, 896, 1962.
    [6] Rao, M. L. B., U.S. Pat., 3, 413, 154, 1968.
    [7] Nole. D.; Moss, V. U.S. Pat., 3532, 543, 1970.
    [8] Chung, S.-H.; Manthiram, A. Current status and future prospects of metal–sulfur batteries. Adv. Mater., 31, 27, 1901125, 2019.
    [9] Wang, J.; Liu, L.; Ling, Z.; Yang, J.; Wan, C.; Jiang, C. Polymer lithium cells with sulfur composites as cathode materials. Electrochim. Acta, 48, 13, 1861, 2003.
    [10] Wang, J.; Chen, J.; Konstantinov, K.; Zhao, L.; Ng, S. H.; Wang, G. X.; Guo, Z. P.; Liu, H. K. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim. Acta, 51, 22, 4634-4638, 2006.
    [11] Yu, X.; Xie, J.; Li, Y.; Huang, H.; Lai, C.; Wang, K. Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries. J. Power Sources, 146, 1-2, 335-339, 2005.
    [12] Choi, Y. J.; Jung, B. S.; Lee, D. J.; Jeong, J. H.; Kim, K. W.; Ahn, H. J.; Cho, K K.; Gu, H. B. Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys. Scr., 2007, T129, 62, 2007.
    [13] Ji, X.; Nazar, L. F. Advances in Li–S batteries. J. Mater. Chem., 20, 44, 9821-9826, 2010.
    [14] Zhang, S. S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta, 70, 344-348, 2012.
    [15] Zhang, S. S.; Tran, D. T. A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density. J. Power Sources, 211, 169-172, 2012.
    [16] Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li‐S batteries. Adv. Energy Mater., 5, 16, 1500408, 2015.
    [17] Mikhaylik, Y. V.; Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc., 151, 11, A1969, 2004.
    [18] Liang, X.; Wen, Z.; Liu, Y.; Wu, M.; Jin, J.; Zhang, H.; Wu, X. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources, 196, 22, 9839-9843, 2011.
    [19] Chung, S.-H.; Chang, C.-H.; Manthiram, A. Progress on the critical parameters for lithium–sulfur batteries to be practically viable. Adv. Funct. Mater., 28, 28, 1801188, 2018.
    [20] Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater., 8, 6, 500–506. 2009.
    [21] Zukalová, M.; Vinarčíková, M.; Bouša, M.; Kavan, L. Nanocrystalline TiO¬2/carbon/sulfur composite cathodes for lithium–sulfur battery. Nanomaterials, 11, 2, 541. 2021.
    [22] Evers, S.; Yim, T.; Nazar, L. F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. J. Phys. Chem. C, 116, 37, 19653-19658, 2012.
    [23] Wang, X.; Bi, X.; Wang, S.; Zhang, Y.; Du, H.; Lu, J. High-rate and long-term cycle stability of Li–S batteries enabled by Li2S/TiO2-impregnated hollow carbon nanofiber cathodes. ACS Appl. Mater. Interfaces, 10, 19, 16552-16560, 2018.
    [24] Liu, S.; Li, Y.; Zhang, C.; Chen, X.; Wang, Z.; Cui, F.; Yang, X.; Yue, W. Amorphous TiO2 nanofilm interface coating on mesoporous carbon as efficient sulfur host for Lithium–Sulfur batteries. Electrochim. Acta, 332, 135458, 2020.
    [25] Patil, S. B.; Kim, H. J.; Lim, H. K.; Oh, S. M.; Kim, J.; Shin, J.; Kim, H.; Choi, J. W.; Hwang, S.-J. Exfoliated 2D lepidocrocite titanium oxide nanosheets for high sulfur content cathodes with highly stable Li–S battery performance. ACS Energy Lett., 3, 2, 412-419, 2018.
    [26] Zha, C.; Wu, D.; Zhang, T.; Wu, J.; Chen, H. A facile and effective sulfur loading method: Direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery. Energy Storage Mater., 17, 118-125, 2019.
    [27] Yin, Z.; Pan, S.; Cheng, Q.; Zhang, G.; Yu, X.; Pan, Z.; Rao, X.; Zhong, X. Mild-method synthesised rGO–TiO¬2 as an effective polysulphide–barrier for lithium–sulphur batteries. J. Alloys Compd., 836, 155341, 2020.
    [28] Li, Y.; Zhu, J.; Shi, R.; Dirican, M.; Zhu, P.; Yan, C.; Jia, H.; Zang, J.; He, J.; Zhang, X. Ultrafine and polar ZrO2-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan. Chem. Eng. J., 349, 376-387, 2018.
    [29] Gaikwad, A.P.; Betty, C.A.; Tyagi, D.; Rao, R.; Tripathi, A.K.; Sasikala, R. In situ formation of surface sulfide species and its role in enhancing the photocatalytic and photoelectrochemical properties of wide bandgap ZrO2. Mol. Catal., 435, 128-134, 2017.
    [30] Rajkumar, P.; Diwakar, K.; Radhika, G.; Krishnaveni, K.; Subadevi, R.; Sivakumar, M. Effect of silicon dioxide in sulfur/carbon black composite as a cathode material for lithium sulfur batteries. Vacuum, 161, 37-48, 2019.
    [31] Pan, H.; Huang, X.; Zhang, R.; Zhang, T.; Chen, Y.; Hoang, T. K. A.; Wen, G. Reduced graphene oxide-encapsulated mesoporous silica as sulfur host for lithium–sulfur battery. J. Solid State Electrochem., 22, 11, 3557-3568, 2018.
    [32] Zhang, R.; Wu, M.; Fan, X.; Jiang, H.; Zhao, T. A Li-S battery with ultrahigh cycling stability and enhanced rate capability based on novel ZnO yolk-shell sulfur host. J. Energy Chem., 55, 136-144, 2021.
    [33] Zhao, T.; Ye, Y.; Peng, X.; Divitini, G.; Kim, H.-K.; Lao, C.-Y.; Coxon, P. R.; Xi, k.; Liu, Y.; Ducati, C.; Chen, R.; Kumar, R. V. Advanced lithium–sulfur batteries enabled by a bio‐inspired polysulfide adsorptive brush. Adv. Funct. Mater., 26, 46, 8418-8426, 2016.
    [34] Xu, P.; Liu, H.; Zeng, Q.; Li, X.; Li, Q.; Pei, K.; Zhang, Y.; Yu, X.; Zhang, J.; Qian, X., Che, R. Yolk−shell nano ZnO@ co‐doped NiO with efficient polarization adsorption and catalysis performance for superior lithium−sulfur batteries. Small, 17, 3, 2005227, 2021.
    [35] Liang, X.; Song, Q.; Liu, Y.; Liu, H. Preparation of ZnO porous nanostructures and its application in cathode material for lithium sulfur battery. Int. J. Electrochem. Sci., 10, 11, 9333-9341, 2015.
    [36] Deng, S.; Yan, Y.; Wei, L.; Li, T.; Su, X.; Yang, X.; Li, Z.; Wu, M. Amorphous Al2O3 with N-doped porous carbon as efficient polysulfide barrier in Li–S batteries. ACS Appl. Energy Mater., 2, 2, 1266-1273, 2019.
    [37] Dong, K.; Wang, S.; Zhang, H.; Wu, J. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries. Mater. Res. Bull., 48, 6, 2079-2083, 2013.
    [38] Wang, H.; Zhang, W.; Xu, J.; Guo, Z. Advances in polar materials for lithium–sulfur batteries. Adv. Funct. Mater., 28, 38, 1707520, 2018.
    [39] Song, M.-S; Han, S.-C.; Kim, H.-S.; Kim, J.-H.; Kim, K.-T.; Kang, Y.-M.; Ahn, H.-J.; Dou, S. X.; Lee, J.-Y. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J. Electrochem. Soc.,151, 6, A791–A795, 2014.
    [40] Liang, X.; Hart C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682, 2015.
    [41] Zheng, C.; Niu, S.; Lv, W.; Zhou, G.; Li, J.; Fan, S.; Deng, Y.; Pan, Z.; Li, B.; Kang F.; Yang, Q.-H. Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries. Nano Energy, 33, 306–312, 2017.
    [42] He, J.; Luo, L.; Chen, Y.; Manthiram, A. Yolk–shelled C@ Fe3O4 nanoboxes as efficient sulfur hosts for high‐performance lithium–sulfur batteries. Adv. Mater., 29, 24, 1702707, 2017.
    [43] Pang, H.-J.; Zhang, G.; Chen, X.; Zhang, Z.-W.; Xu, W.-T.; Huang, J.-Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew. Chem., 128, 13184-13189, 2016.
    [44] Lim, W-G; Kim, S.; Jo, C.; Lee, J. A comprehensive review of materials with catalytic effects in Li–S batteries: enhanced redox kinetics. Angew. Chem, 131, 52, 18920-18931, 2019.
    [45] Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: a review of graphene. Chem. Rev.,110, 1, 132–145, 2010.
    [46] Choucair, M.; Thordarson, P.; Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature nanotech., 4, 1, 30–33, 2009.
    [47] Wang, J.-Z.; Lu, L.; Choucair, M.; Stride, J. A.; Xu, X.; Liu, H.-K. Sulfur-graphene composite for rechargeable lithium batteries. J. Power Sources, 196, 16, 7030–7034, 2011.
    [48] Li, N.; Zheng, M.; Lu, H.; Hu, Z.; Shen, C.; Chang, X.; Ji, G.; Cao, J.; Shi, Y. High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem. Commun., 48, 4106–4108, 2012.
    [49] Zhang, L.; Qian, T.; Zhu, X.; Hu, Z.; Wang, M.; Zhang, L.; Jiang, T.; Tian, J.-H.; Yan, C. In situ optical spectroscopy characterization for optimal design of lithium–sulfur batteries. Chem. Soc. Rev., 48, 5432-5453, 2019.
    [50] Yu, M.; Ma, J.; Song, H.; Wang, A.; Tian, F.; Wang, Y.; Wang, R. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries. Energy Environ. Sci., 9, 4, 1495-1503, 2016.
    [51] Kim, H.; Lim, H-D; Kim, J.; Kang, K. Graphene for advanced Li/S and Li/air batteries. J. Mater. Chem. A, 2, 33-47, 2014.
    [52] Hou, Z.-L.; Song, W.-L.; Wang, P.; Meziani, M. J.; Kong, C. Y.; Anderson, A.; Maimaiti, H.; LeCroy, G. E.; Qian, H.; Sun, Y.-P. Flexible graphene–graphene composites of superior thermal and electrical transport properties. ACS Appl. Mater. Interfaces, 6, 17, 15026-15032, 2014.
    [53] Teng, C.; Xie, D.; Wang, J.; Yang, Z.; Ren, G.; Zhu, Y. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater., 27, 20, 1700240, 2017.
    [54] Choi, W.; Shin, H.-C.; Kim, J. M.; Choi, J.-Y.; Yoon, W.-S. Modeling and Applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batterie. J. Electrochem. Sci. Technol, 11, 1, 1-13, 2020.
    [55] Mäntele, W.; Deniz, E. UV–vis absorption spectroscopy: Lambert-Beer reloaded. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 965-968, 2017.
    [56] Pettinger B. In: adsorption at Electrode Surface, New York, VCH, 284-345, 1992.
    [57] Patel, M. U.; Demir‐Cakan, R.; Morcrette, M.; Tarascon, J. M.; Gaberscek, M.; Dominko, R. Li‐S battery analyzed by UV/Vis in operando mode. ChemSusChem, 6, 7, 1177-1181, 2013.
    [58] He, Q.; Freiberg, A. T.; Patel, M. U.; Qian, S.; Gasteiger, H. A. Operando identification of liquid intermediates in lithium–sulfur batteries via transmission UV–vis spectroscopy. J. Electrochem. Soc., 167, 8, 080508, 2020.
    [59] Lu, Q.; Zou, X.; Ran, R.; Zhou, W.; Liao, K.; Shao, Z. An “electronegative” bifunctional coating layer: simultaneous regulation of polysulfide and Li-ion adsorption sites for long-cycling and “dendrite-free” li–s batteries. J. Mater. Chem. A, 7, 39, 22463-22474, 2019.
    [60] Qi, C.; Cai, M.; Li, Z.; Jin, J.; Chowdari, B. V.; Chen, C. Wen, Z. Ultrathin TiO2 surface layer coated TiN nanoparticles in freestanding film for high sulfur loading Li-S battery. Chem. Eng. J., 399, 125674, 2020.
    [61] Lee, C.-H.; Chen, W.-C., Khung, Y. L. XPS analysis of 2-and 3-aminothiophenol grafted on silicon (111) hydride surfaces. Molecules, 23, 10, 2712, 2018.
    [62] Yen, Y.-J.; Chung, S.-H. Lean-electrolyte lithium–sulfur electrochemical cells with high-loading carbon nanotube/nanofiber–polysulfide cathodes. Chem. Commun., 57, 2009-2012, 2021.
    [63] Liu, D.; Zhang, C.; Zhou, G.; Lv, W.; Ling, G.; Zhi, L.; Yang, Q.-H. Catalytic effects in lithium–sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci., 5, 1700270, 2018.
    [64] Huang, X.; Wang, Z.; Knibbe, R.; Luo, B.; Ahad, S. A.; Sun, D.; Wang, L. Cyclic voltammetry in lithium–sulfur batteries—challenges and opportunities. Energy Technol., 7, 8, 1801001, 2019.
    [65] Tao, Y.; Wei, Y.; Liu, Y.; Wang, J.; Qiao, W.; Ling, L.; Long, D. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium–sulfur battery. Energy Environ. Sci., 9, 3230-3239, 2016.
    [66] Fan, F. Y.; Woodford, W. H.; Li, Z.; Baram, N.; Smith, K. C.; Helal, A.; McKineley, G. H.; Carter, W. C.; Chiang, Y.-M. Polysulfide flow batteries enabled by percolating nanoscale conductor networks. Nano lett., 14, 4, 2210-2218, 2014.
    [67] Waluś, S.; Barchasz, C.; Bouchet, R.; Leprêtre, J. C.; Colin, J. F.; Martin, J. F.; Elkaïm, E.; Baehtz, C.; Alloin, F. Lithium/sulfur batteries upon cycling: structural modifications and species quantification by in situ and operando X‐ray diffraction spectroscopy. Adv. Energy Mater., 5, 16, 1500165, 2015.
    [68] Wu, H.; Zheng, L.; Zhan, J.; Du, N.; Liu, W.; Ma, J.; Su, L.; Wang, L. Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance li-ion battery anodes. J. Power. Sources, 449, 15, 227513, 2020.
    [69] Zhou, H.; Tang, Q.; Xu, Q.; Zhang, Y.; Huang, C.; Xu, Y.; Chen, X. Enhanced performance of lithium–sulfur batteries based on single-sided chemical tailoring, and organosiloxane grafted PP separator. RSC Adv., 10, 18115-18123, 2020.
    [70] Wang, L.-G.; Qian, X.; Cao, Y.-Q.; Cao, Z.-Y.; Fang, G.-Y.; Li, A.-D.; Wu, D. Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications. Nanoscale Res. Lett., 10, 135, 2015.
    [71] Duan, X.; Yuan, D.; Yu, F. Cation distribution in co-doped ZnAl2O4 nanoparticles studied by X-ray photoelectron spectroscopy and 27Al solid-state NMR spectroscopy. Inorg. Chem., 50, 12, 5460-5467, 2011.
    [72] Iaiche, S.; Djelloul; A. ZnO/ZnAl2O4 nanocomposite films studied by X-ray diffraction, FTIR, and X-ray photoelectron spectroscopy. Journal of Spectroscopy, 2015, 836859, 2015.
    [73] Zheng, S.; Xiao, W.; Zhang, Y.; Liu, K.; Zhang, X.; Zhao, J.; Wang, Z.; Zhang, P.; Shao, G. Construction of a low-defect and highly conductive 3D graphene network to enable a high sulphur content cathode for high performance Li–S/graphene batteries. J. Mater. Chem. A, 6, 22555-22565, 2018.
    [74] Yu, M.; Shao, D.; Lu, F.; Sun, X.; Sun, H.; Hu, T.; Wang, G.; Sawyer, S.; Qiu; H.; Lian, J. ZnO/graphene nanocomposite fabricated by high energy ball milling with greatly enhanced lithium storage capability. Electrochem. commun, 34, 312-315, 2013.
    [75] Ma, Z.; Tao, L.; Liu, D.; Li, Z.; Zhang, Y.; Liu, Z.; Liu, H.; Chen, Ru; Huo, J.; Wang, S. Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium–sulfur batteries. J. Mater. Chem. A., 5, 9412-9417, 2017.
    [76] Cabello, M.; Gucciardi, E.; Herrán, A.; Carriazo, D.; Villaverde, A.; Rojo, T. Towards a high-power Si@graphite anode for lithium ion batteries through a wet ball milling process. Molecules, 25, 11, 2494, 2020.
    [77] Tie, X.; Han, Q.; Liang, C.; Li, B.; Zai, J.; Qian, X. Si@SiOx/graphene nanosheets composite: ball milling synthesis and enhanced lithium storage performance. Front. Chem., 4, 47, 2018.
    [78] Hu, L; Xia, W; Tang, R; Hu, R; Ouyang, L; Sun, T.; Wang, H. Excellent cyclic and rate performances of SiO/C/Graphite composites as li-ion battery anode. Front. Chem., 8. 388, 2020.
    [79] Yu, M.; Ma, J.; Song, H.; Wang, A.; Tian, F.; Wang, Y.; Qiu, H.; Wang, R. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries. Energy Environ. Sci., 9, 1495–1503, 2016.
    [80] Chen, T.; Zhang, Z.; Cheng, B.; Chen, R.; Hu, Y.; Ma, L; Zhu, G.; Liu, J.; Jin, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries. J. Am. Chem. Soc., 139, 36, 12710-12715, 2017.
    [81] Fang, R.; Zhao, S.; Hou, P.; Cheng, M.; Wang, S.; Cheng, H.-M.; Liu, C.; Li, F. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Adv. Mater., 28, 17, 3374–3382, 2016.
    [82] Yin, L.; Wang, J.; Lin, F.; Yang, Jun, Nuli, Y.; Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy Environ. Sci., 5, 6966-6972, 2012.
    [83] Zhou, G.; Zhao, Y.; Manthiram. A. Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li–S batteries. Adv. Energy Mater., 5, 9, 1402263, 2015.
    [84] Li, H.; Sun, L.; Zhao, Y.; Tan, T.; Zhang, Y. A novel CuS/graphene-coated separator for suppressing the shuttle effect of lithium/sulfur batteries. Appl. Sur. Sci., 466, 309-319, 2019.
    [85] Lee, D. K.; Kim, S. J.; Kim, Y.-J.; Choi, H.; Kim, D. W.; Jeon, H.-J.; Ahn, C. W.; Lee, J. W., Jung, H.-T. Graphene oxide/carbon nanotube bilayer flexible membrane for high-performance Li–S batteries with superior physical and electrochemical properties. Adv. Mater. Interfaces, 6, 7, 1801992, 2019.
    [86] Mi, Y.; Liu, W.; Li, X.; Zhuang, J., Zhou, H.; Wang, H. High-performance Li–S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res., 10, 3698-3705, 2017.
    [87] Mahumder, S.; Shao, M.; Deng, Y.; Chen, G. Two dimensional WS2/C nanosheets as a polysulfides immobilizer for high performance lithium-sulfur batteries. J. Electrochem. Soc., 166, 3, A5386, 2019.
    [88] Kim, H.; Kim, S.-W.; Hong, J.; Lim, H.-D.; Kim, H; Yoo, J.-K.; Kang, K. Graphene-based hybrid electrode material for high-power lithium-ion batteries. J. Electrochem. Soc., 158, A930, 2011.
    [89] Tan, S.; Wu, Y.; Kan, S.; Bu, M.; Liu, Y.; Yang, L.; Yang, Y.; Liu, H. A combination of MnO2-decorated graphene aerogel modified separator and I/N codoped graphene aerogel sulfur host to synergistically promote Li–S battery performance. Electrochim. Acta, 348, 136173, 2020.
    [90] Zhou, J.; Li, S.; Ji, X.; Sun, W.; Yang, Y. Designing vapor silica-supported sulfur cathode for long-life lithium–sulfur battery. Chem. Eng. J. 382, 122843, 2020.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE