| 研究生: |
許翠珊 HSU, TSUI-SHAN |
|---|---|
| 論文名稱: |
Oct4 透過調控巨噬細胞聚落刺激因子促進 M2巨噬細胞的極化造成肺癌轉移 Oct4-mediated Upregulation of Macrophage Colony-Stimulating Factor Promotes Lung Cancer Metastasis through M2 Macrophage Polarization |
| 指導教授: |
吳昭良
Wu, Chao-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | M2巨噬細 、Oct4 、巨噬細胞聚落刺激因子 、肺癌 |
| 外文關鍵詞: | M2 macrophage, Oct4, macrophage colony-stimulating factor, lung cancer |
| 相關次數: | 點閱:118 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺癌是常見造成全世界癌症相關死亡率的疾病之一,尤其是肺癌轉移造成較差的預後和較低的存活率。Oct4 是一種轉錄因子且被視為是調控幹細胞多潛能性(pluripotency)的重要因子,在許多不同的癌症中它都有大量表現且對於腫瘤生成常扮演關鍵性的角色。巨噬細胞可以保護宿主對抗外在感染以及一般受傷情況;然而,它們有時在腫瘤組織裡也會被偵測到。在腫瘤裡的巨噬細胞即是所謂的“腫瘤相關巨噬細胞”(tumor-associated macrophages,TAMs),他們會促進腫瘤生長。而巨噬細胞聚落刺激因子 (macrophage colony stimulating factor,M-CSF) 對於巨噬細胞的分化和生長是非常重要的,且可以誘發M2巨噬細胞的極化。M2巨噬細胞會抑制作用性T細胞 (effector T cells) 的功能,並通過多種機制幫助血管生成和轉移。本研究的目的是調查Oct4和M2巨噬細胞之間的關係和其對腫瘤免疫監視 (tumor immunosurveillance) 的貢獻。首先,我們發現Oct4過量表達的A549肺癌細胞表現與控制組的相比,M-CSF有更高表現量。更甚者,我們利用螢光素酶檢測法 (luciferase reporter),啟動子突變(promoter mutation)以及染色質免疫沉澱技術(chromatin immunoprecipitation assays) 去證實Oct4激活巨噬細胞聚落刺激因子的啟動子,而且我們也成功的證明在巨噬細胞聚落刺激因子啟動子上有兩個Oct4反應元素(Oct4 response elements,OREs)。為了更進一步確認Oct4是產生透過巨噬細胞聚落刺激因子去誘發M2巨噬細胞的極化,我們利用PMA誘導的THP-1單核細胞與Oct4過量表達的A549肺癌細胞培養液做培養,發現M2巨噬細胞的極化的產生。利用通透性嵌套移行分析 (Transwell migration assay) 發現那些極化成M2巨噬細胞會增加A549肺癌細胞的爬行能力。我們也在種植Oct4過量表現腫瘤細胞的C57BL/6 老鼠中發現,在第15天M2巨噬細胞會增加,而且腫瘤會第24天轉移到肺部。我們也利用全反式維甲酸 (all-trans retinoic acid) 治療有種植腫瘤的老鼠,發現腫瘤有縮小的情形且M2巨噬細胞表現和肺臟轉移現象有被抑制。更進一步將in vivo實驗延伸到臨床運用上,我們利用免疫染色發現肺癌病人的腫瘤組織切片中Oct4、巨噬細胞聚落刺激因子和M2巨噬細胞的標記 (CD206) 皆有大量表現。除此之外,我們也統計多位肺癌病人的腫瘤組織切片Oct4、巨噬細胞聚落刺激因子和M2巨噬細胞的標記 (CD206) 的表現,結果顯它們兩兩之間的皆為正相關性。此結果證實了我們動物實驗中Oct4與M2巨噬細胞有相關。總結我們的實驗結果,Oct4是巨噬細胞聚落刺激因子的一個調控子,可以調控M2巨噬細胞的極化與肺癌細胞的轉移。然而當我們利用全反式維甲酸進行治療時,可以抑制腫瘤生長、M2巨噬細胞的表現以及肺臟轉移。
Our researches focus on investigating the association between Oct4 and tumor immunosurveillance, and the main findings include: 1. Oct4 regulates M-CSF promoter to induce M2 macrophage polarization, 2. transwell analysis to demonstrate that PMA-treated THP-1 monocyte cell cultlure with supernatant of Oct4-overexpressing lung cancer cell increases the cell migration ability, 3. Oct4-overexpressed tumor-bearing mice had bigger tumor volume, poor survival, more M2 macrophage expression, and increased lung cancer metastasis. Finally, we proved that all-trans retinoic acid-treated Lewis Lung Carcinoma (LL2)-bearing C57BL/6 mice had decreased tumor volume, better survival rate, reduced M2 macrophage polarization and lung metastasis. To extend our in vivo findings, we established positive correlations between the expression Oct4, M-CSF and M2 macrophage in clinical lung cancer patients by immunohistochemistry analysis. In conclusion, our results indicate that Oct4 is a regulator of M-CSF and can promote M2 macrophage polarization and lung cancer metastasis.
Atlasi,Y., Mowla,S.J., Ziaee,S.A., and Bahrami,A.R. (2007). OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int. J. Cancer 120, 1598-1602.
Bacac,M. and Stamenkovic,I. (2008). Metastatic cancer cell. Annu. Rev. Pathol. 3, 221-247.
Bingle,L., Brown,N.J., and Lewis,C.E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254-265.
Biswas,S.K. and Mantovani,A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889-896.
Budhu,A., Forgues,M., Ye,Q.H., Jia,H.L., He,P., Zanetti,K.A., Kammula,U.S., Chen,Y., Qin,L.X., Tang,Z.Y., and Wang,X.W. (2006). Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10, 99-111.
Chang,C.C., Shieh,G.S., Wu,P., Lin,C.C., Shiau,A.L., and Wu,C.L. (2008). Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells. Cancer Res. 68, 6281-6291.
Chang,C.J., Chien,Y., Lu,K.H., Chang,S.C., Chou,Y.C., Huang,C.S., Chang,C.H., Chen,K.H., Chang,Y.L., Tseng,L.M., Song,W.S., Wang,J.J., Lin,J.K., Huang,P.I., and Lan,Y.T. (2011). Oct4-related cytokine effects regulate tumorigenic properties of colorectal cancer cells. Biochem. Biophys. Res. Commun. 415, 245-251.
Chen,J., Yao,Y., Gong,C., Yu,F., Su,S., Chen,J., Liu,B., Deng,H., Wang,F., Lin,L., Yao,H., Su,F., Anderson,K.S., Liu,Q., Ewen,M.E., Yao,X., and Song,E. (2011). CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19, 541-555.
Chen,Y.C., Hsu,H.S., Chen,Y.W., Tsai,T.H., How,C.K., Wang,C.Y., Hung,S.C., Chang,Y.L., Tsai,M.L., Lee,Y.Y., Ku,H.H., and Chiou,S.H. (2008). Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS. One. 3, e2637.
Chen,Z.X., Xue,Y.Q., Zhang,R., Tao,R.F., Xia,X.M., Li,C., Wang,W., Zu,W.Y., Yao,X.Z., and Ling,B.J. (1991). A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood 78, 1413-1419.
Chiou,S.H., Wang,M.L., Chou,Y.T., Chen,C.J., Hong,C.F., Hsieh,W.J., Chang,H.T., Chen,Y.S., Lin,T.W., Hsu,H.S., and Wu,C.W. (2010). Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 70, 10433-10444.
Chitu,V. and Stanley,E.R. (2006). Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 18, 39-48.
Dann,C.T., Alvarado,A.L., Molyneux,L.A., Denard,B.S., Garbers,D.L., and Porteus,M.H. (2008). Spermatogonial stem cell self-renewal requires OCT4, a factor downregulated during retinoic acid-induced differentiation. Stem Cells 26, 2928-2937.
Fleetwood,A.J., Dinh,H., Cook,A.D., Hertzog,P.J., and Hamilton,J.A. (2009). GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J. Leukoc. Biol. 86, 411-421.
Frankel,S.R., Eardley,A., Heller,G., Berman,E., Miller,W.H., Jr., Dmitrovsky,E., and Warrell,R.P., Jr. (1994). all-trans retinoic acid for acute promyelocytic leukemia. Results of the New York Study. Ann. Intern. Med. 120, 278-286.
Galon,J., Costes,A., Sanchez-Cabo,F., Kirilovsky,A., Mlecnik,B., Lagorce-Pages,C., Tosolini,M., Camus,M., Berger,A., Wind,P., Zinzindohoue,F., Bruneval,P., Cugnenc,P.H., Trajanoski,Z., Fridman,W.H., and Pages,F. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960-1964.
Gordon,S. and Taylor,P.R. (2005). Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953-964.
Greten,F.R., Eckmann,L., Greten,T.F., Park,J.M., Li,Z.W., Egan,L.J., Kagnoff,M.F., and Karin,M. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285-296.
Hamilton,J.A. (2008). Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533-544.
Huang,M.E., Ye,Y.C., Chen,S.R., Chai,J.R., Lu,J.X., Zhoa,L., Gu,L.J., and Wang,Z.Y. (1988). Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72, 567-572.
Jemal,A., Siegel,R., Xu,J., and Ward,E. (2010). Cancer statistics, 2010. CA Cancer J. Clin. 60, 277-300.
Jewell,A.P., Yong,K.L., Worman,C.P., Tsakona,C.P., Giles,F.J., and Goldstone,A.H. (1994). Serum macrophage colony-stimulating factor (M-CSF) levels correlate with clinical response to interferon-alpha in patients with early-stage B-CLL. Br. J. Haematol. 86, 441-443.
Karoubi,G., Gugger,M., Schmid,R., and Dutly,A. (2009b). OCT4 expression in human non-small cell lung cancer: implications for therapeutic intervention. Interact. Cardiovasc. Thorac. Surg. 8, 393-397.
Karoubi,G., Gugger,M., Schmid,R., and Dutly,A. (2009a). OCT4 expression in human non-small cell lung cancer: implications for therapeutic intervention. Interact. Cardiovasc. Thorac. Surg. 8, 393-397.
Katsumata,N., Eguchi,K., Fukuda,M., Yamamoto,N., Ohe,Y., Oshita,F., Tamura,T., Shinkai,T., and Saijo,N. (1996). Serum levels of cytokines in patients with untreated primary lung cancer. Clin. Cancer Res. 2, 553-559.
Kratz,J.R., Yagui-Beltran,A., and Jablons,D.M. (2010). Cancer stem cells in lung tumorigenesis. Ann. Thorac. Surg. 89, S2090-S2095.
Ma,J., Liu,L., Che,G., Yu,N., Dai,F., and You,Z. (2010). The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC. Cancer 10, 112.
Mantovani,A., Allavena,P., and Sica,A. (2004). Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur. J. Cancer 40, 1660-1667.
Mantovani,A., Allavena,P., Sica,A., and Balkwill,F. (2008). Cancer-related inflammation. Nature 454, 436-444.
Moradi,M.M., Carson,L.F., Weinberg,B., Haney,A.F., Twiggs,L.B., and Ramakrishnan,S. (1993). Serum and ascitic fluid levels of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in patients with ovarian epithelial cancer. Cancer 72, 2433-2440.
Okamoto,K., Okazawa,H., Okuda,A., Sakai,M., Muramatsu,M., and Hamada,H. (1990). A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60, 461-472.
Ozaki,S., Matsushita,T., Ide,M., Ozaki,K., Sano,T., Kosaka,M., and Saito,S. (1995). Macrophage colony-stimulating factor-producing malignant histiocytosis. Br. J. Haematol. 90, 453-456.
Pikarsky,E., Porat,R.M., Stein,I., Abramovitch,R., Amit,S., Kasem,S., Gutkovich-Pyest,E., Urieli-Shoval,S., Galun,E., and Ben-Neriah,Y. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461-466.
Pikarsky,E., Sharir,H., Ben-Shushan,E., and Bergman,Y. (1994). Retinoic acid represses Oct-3/4 gene expression through several retinoic acid-responsive elements located in the promoter-enhancer region. Mol. Cell Biol. 14, 1026-1038.
Pollard,J.W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71-78.
Porta,C., Larghi,P., Rimoldi,M., Totaro,M.G., Allavena,P., Mantovani,A., and Sica,A. (2009). Cellular and molecular pathways linking inflammation and cancer. Immunobiology 214, 761-777.
Pyonteck,S.M., Akkari,L., Schuhmacher,A.J., Bowman,R.L., Sevenich,L., Quail,D.F., Olson,O.C., Quick,M.L., Huse,J.T., Teijeiro,V., Setty,M., Leslie,C.S., Oei,Y., Pedraza,A., Zhang,J., Brennan,C.W., Sutton,J.C., Holland,E.C., Daniel,D., and Joyce,J.A. (2013). CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264-1272.
Rolny,C., Mazzone,M., Tugues,S., Laoui,D., Johansson,I., Coulon,C., Squadrito,M.L., Segura,I., Li,X., Knevels,E., Costa,S., Vinckier,S., Dresselaer,T., Akerud,P., De,M.M., Salomaki,H., Phillipson,M., Wyns,S., Larsson,E., Buysschaert,I., Botling,J., Himmelreich,U., Van Ginderachter,J.A., De,P.M., Dewerchin,M., Claesson-Welsh,L., and Carmeliet,P. (2011). HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19, 31-44.
Rosner,M.H., Vigano,M.A., Ozato,K., Timmons,P.M., Poirier,F., Rigby,P.W., and Staudt,L.M. (1990). A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686-692.
Rozel,S., Galban,C.J., Nicolay,K., Lee,K.C., Sud,S., Neeley,C., Snyder,L.A., Chenevert,T.L., Rehemtulla,A., Ross,B.D., and Pienta,K.J. (2009). Synergy between anti-CCL2 and docetaxel as determined by DW-MRI in a metastatic bone cancer model. J. Cell Biochem. 107, 58-64.
Scholl,S.M., Lidereau,R., de la,R.A., Le-Nir,C.C., Mosseri,V., Nogues,C., Pouillart,P., and Stanley,F.R. (1996). Circulating levels of the macrophage colony stimulating factor CSF-1 in primary and metastatic breast cancer patients. A pilot study. Breast Cancer Res. Treat. 39, 275-283.
Scholl,S.M., Pallud,C., Beuvon,F., Hacene,K., Stanley,E.R., Rohrschneider,L., Tang,R., Pouillart,P., and Lidereau,R. (1994). Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J. Natl. Cancer Inst. 86, 120-126.
Schoorlemmer,J., Jonk,L., Sanbing,S., van,P.A., Feijen,A., and Kruijer,W. (1995). Regulation of Oct-4 gene expression during differentiation of EC cells. Mol. Biol. Rep. 21, 129-140.
Sica,A., Schioppa,T., Mantovani,A., and Allavena,P. (2006). Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur. J. Cancer 42, 717-727.
Thiery,J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442-454.
Voulgari,A. and Pintzas,A. (2009). Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta 1796, 75-90.
Wang,X.Q., Ongkeko,W.M., Chen,L., Yang,Z.F., Lu,P., Chen,K.K., Lopez,J.P., Poon,R.T., and Fan,S.T. (2010). Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 52, 528-539.
Zhang,X., Han,B., Huang,J., Zheng,B., Geng,Q., Aziz,F., and Dong,Q. (2010). Prognostic significance of OCT4 expression in adenocarcinoma of the lung. Jpn. J. Clin. Oncol. 40, 961-966
校內:2024-12-31公開