| 研究生: |
林大鈞 Lin, Da-Jun |
|---|---|
| 論文名稱: |
生醫用鎂鋅合金微觀組織及表面處理效應對生物降解特性及生物相容性之影響 Effects of Microstructure Modification and Surface Treatment on the Biodegradable Characteristics and Biocompatibility of Bio-Magnesium-Zinc alloy |
| 指導教授: |
洪飛義
Hung, Fei-Yi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 205 |
| 中文關鍵詞: | 鎂合金 、生醫材料 、生物降解 |
| 外文關鍵詞: | Magnesium alloy, Biomaterial, Biodegradation |
| 相關次數: | 點閱:226 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鎂金屬因具有適當的生物力學特性及生物可吸收(降解)性,降解過程中釋出的鎂離子可刺激細胞的生理活性,適合應用在短期植入的人工植體上,有機會導入低受力區的骨固定治療用途中,為近年的前瞻生醫金屬材料。但鎂合金由於高活性及低腐蝕阻抗,導致材料表面析氫速度過快,可能降低細胞及組織貼附及癒合的反應,因此必須運用材料組織及表面改質技術,使鎂合金的缺點獲得良好改善並提升其應用性。
本研究考量生物安全性,以無毒的鎂鋅合金為素材,研究分三階段,首先使用熱處理進行組織調質研究,調控真空熱處理參數使材料內部產生迥異的質地特徵,並透過機械性質、腐蝕試驗及生物試驗得知均勻且細晶的微觀組織最適合應用於可降解鎂醫材中,最佳化組織的降解速率適中,於細胞層級可促進骨細胞快速增生及遷移,於實驗兔腿骨植入試驗中亦發現具有快速形成骨痂及骨質增厚的作用,證明其具有優異的骨傳導性。第二階段運用表面奈米氟晶沉積塗覆材料表面,材料鈍化且明顯降低析氫速度,由塗層解析中得知,奈米氟晶為奈米級氟化物複合介金屬化合物的雙相塗層,該塗層隨時間增長而增加厚度及緻密性,為其主要的表面鈍化機制;此塗層亦可透過表面光學測量得知其成膜品質,當塗層光反射率低於3.5%時,塗層的防護效率可達90%以上。第三階段研究以微晶化成形法進行骨科及牙科鎂醫材製備,本研究為首例採用微晶化成形製程開發出骨科鎂克氏針及牙科鎂再生膜,結果顯示微晶化組織具有更好的機械性質及耐蝕表現,導入前二階段之最佳化改質技術更有效提升材料耐用性,以骨科克氏針為例,長時間體外腐蝕-彎折強度仍可維持七成結構強度;以牙科再生膜為例,由預彎折-腐蝕試驗及大鼠植入試驗發現,微晶化及複合式改質材料具有最佳防蝕效果,可避免材料短時間內失效的疑慮,同時材料具有加速骨癒合的效果,於三個月植入期內即可完整修復大面積骨缺損區。由上述結果,本研究所研究之改質型鎂鋅合金及相關表面處理技術可有效應用於可降解性骨科及牙科植體。
Magnesium(Mg) alloys are novel biodegradable materials which have been studied recently for temporary fixation. In addition, Mg is known to play an important role in the bone formation and mineralization, moreover, the degradation products of Mg alloy can stimulate bone cell and tissue for improving healing reaction. However, owing to high surface activity and hydrogen evolution rate, the healing situation might be seriously affected. Thus, microstructure modification and surface treatment are indispensable to improve anti-corrosion behavior and applicability.
The attempt will be devoted to combine microstructure modification and surface treatment for obtaining well-functioned Mg-based orthopedic and dental implant (Kirschner pin and regeneration membrane). After optimized modification procedure, mechanical and anti-corrosion performance were significantly improved. The reliability tests showed that the duplex modification can maintain the mechanical integrity of Mg substrate. Furthermore, the biofunctionality of Mg implants was studied by using mouse cranial model. It was found that the well treated Mg alloy could accelerate new bone growth and heal almost 100% after 3 month implantation. It was concluded that the modified Mg-Zn alloy had good biocompatibility and can apply in orthopedic and dental field.
1. Hench, L. L., Biomaterials: a forecast for the future. Biomaterials, 1998. 19(16): pp. 1419-1423.
2. Sumita, M., Hanawa, T., and Teoh, S. H., Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials - Review. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2004. 24(6-8): pp. 753-760.
3. Geetha, M., Singh, A. K., Asokamani, R., and Gogia, A. K., Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science, 2009. 54(3): pp. 397-425.
4. Tschernitschek, H., Borchers, L., and Geurtsen, W., Nonalloyed titanium as a bioinert metal - A review. Quintessence International, 2005. 36(7-8): pp. 523-530.
5. Conrad, H. J., Seong, W. J., and Pesun, G. J., Current ceramic materials and systems with clinical recommendations: A systematic review. Journal of Prosthetic Dentistry, 2007. 98(5): pp. 389-404.
6. Ramakrishna, S., Mayer, J., Wintermantel, E., and Leong, K. W., Biomedical applications of polymer-composite materials: a review. Composites Science and Technology, 2001. 61(9): pp. 1189-1224.
7. Kim, H. M., Miyaji, F., Kokubo, T., and Nakamura, T., Preparation of bioactive Ti and its alloys via simple chemical surface treatment. Journal of Biomedical Materials Research, 1996. 32(3): pp. 409-417.
8. Hench, L. L. and Polak, J. M., Third-generation biomedical materials. Science, 2002. 295(5557): pp. 1014-1020.
9. Walker, J., Shadanbaz, S., Woodfield, T. B. F., Staiger, M. P., and Dias, G. J., Magnesium biomaterials for orthopedic application: A review from a biological perspective. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2014. 102(6): pp. 1316-1331.
10. Lukaski, H. C., Magnesium, zinc, and chromium nutriture and physical activity. American Journal of Clinical Nutrition, 2000. 72(2): pp. 585s-593s.
11. Ilich, J. Z. and Kerstetter, J. E., Nutrition in bone health revisited: A story beyond calcium. Journal of the American College of Nutrition, 2000. 19(6): pp. 715-737.
12. Reinhart, R. A., Magnesium-metabolism - a review with special reference to the relationship between intracellular content and serum levels. Archives of Internal Medicine, 1988. 148(11): pp. 2415-2420.
13. Shechter, M., Sharir, M., Labrador, M. J. P., Forrester, J., Silver, B., and Merz, C. N. B., Oral magnesium therapy improves endothelial function in patients with coronary artery disease. Circulation, 2000. 102(19): pp. 2353-2358.
14. Graber, M. L., Magnesium-deficiency - pathophysiologic and clinical overview. American Journal of Kidney Diseases, 1995. 25(6): pp. 973-973.
15. Rude, R. K. and Gruber, H. E., Magnesium deficiency and osteoporosis: animal and human observations. Journal of Nutritional Biochemistry, 2004. 15(12): pp. 710-716.
16. Staiger, M. P., Pietak, A. M., Huadmai, J., and Dias, G., Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006. 27(9): pp. 1728-1734.
17. Saris, N. E. L., Mervaala, E., Karppanen, H., Khawaja, J. A., and Lewenstam, A., Magnesium - An update on physiological, clinical and analytical aspects. Clinica Chimica Acta, 2000. 294(1-2): pp. 1-26.
18. Zreiqat, H., Howlett, C. R., Zannettino, A., Evans, P., Schulze-Tanzil, G., Knabe, C., and Shakibaei, M., Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. Journal of Biomedical Materials Research, 2002. 62(2): pp. 175-184.
19. Pietak, A., Mahoney, P., Dias, G. J., and Staiger, M. P., Bone-like matrix formation on magnesium and magnesium alloys. Journal of Materials Science-Materials in Medicine, 2008. 19(1): pp. 407-415.
20. Janning, C., Willbold, E., Vogt, C., Nellesen, J., Meyer-Lindenberg, A., Windhagen, H., Thorey, F., and Witte, F., Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomaterialia, 2010. 6(5): pp. 1861-1868.
21. Chaya, A., Yoshizawa, S., Verdelis, K., Myers, N., Costello, B. J., Chou, D. T., Pal, S., Maiti, S., Kumta, P. N., and Sfeir, C., In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomaterialia, 2015. 18: pp. 262-269.
22. Quan, G. F., Yield and plastic deformation of Mg-alloy AZ31 at elevated temperatures. Magnesium - Science, Technology and Applications, 2005. 488-489: pp. 623-628.
23. Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., and Windhagen, H., In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005. 26(17): pp. 3557-3563.
24. Kraus, T., Fischerauer, S. F., Hanzi, A. C., Uggowitzer, P. J., Loffler, J. F., and Weinberg, A. M., Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomaterialia, 2012. 8(3): pp. 1230-1238.
25. Song, G. L. and Song, S. Z., A possible biodegradable magnesium implant material. Advanced Engineering Materials, 2007. 9(4): pp. 298-302.
26. Aung, N. N. and Zhou, W., Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corrosion Science, 2010. 52(2): pp. 589-594.
27. Wang, H., Estrin, Y., and Zuberova, Z., Bio-corrosion of a magnesium alloy with different processing histories. Materials Letters, 2008. 62(15): pp. 2476-2479.
28. Figueiredo, R. B. and Langdon, T. G., The development of superplastic ductilities and microstructural homogeneity in a magnesium ZK60 alloy processed by ECAP. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006. 430(1-2): pp. 151-156.
29. Hornberger, H., Virtanen, S., and Boccaccini, A. R., Biomedical coatings on magnesium alloys - A review. Acta Biomaterialia, 2012. 8(7): pp. 2442-2455.
30. Makar, G. L. and Kruger, J., Corrosion of Magnesium. International Materials Reviews, 1993. 38(3): pp. 138-153.
31. Zeng, R. C., Zhang, J., Huang, W. J., Dietzel, W., Kainer, K. U., Blawert, C., and Ke, W., Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2006. 16: pp. S763-S771.
32. Ghali, E., Dietzel, W., and Kainer, K. U., General and localized corrosion of magnesium alloys: A Critical Review. Journal of Materials Engineering and Performance, 2013. 22(10): pp. 2875-2891.
33. Makar, G. L., Kruger, J., and Sieradzki, K., Stress-corrosion cracking of rapidly solidified magnesium aluminum-alloys. Corrosion Science, 1993. 34(8): pp. 1311-&.
34. Zhao, M. C., Liu, M., Song, G. L., and Atrens, A., Influence of homogenization annealing of AZ91 on mechanical properties and corrosion behavior. Advanced Engineering Materials, 2008. 10(1-2): pp. 93-103.
35. Song, G. L., Atrens, A., and Dargusch, M., Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science, 1999. 41(2): pp. 249-273.
36. Coy, A. E., Viejo, F., Skeldon, P., and Thompson, G. E., Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion. Corrosion Science, 2010. 52(12): pp. 3896-3906.
37. Mordike, B. L. and Ebert, T., Magnesium - properties - applications - potential. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2001. 302(1): pp. 37-45.
38. Humerothery, W., Atomic diameters atomic volumes and solid solubility relations in alloys. Acta Metallurgica, 1966. 14(1): pp. 17-25.
39. Zhao, M. C., Liu, M., Song, G. L., and Atrens, A., Influence of the beta-phase morphology on the corrosion of the Mg alloy AZ91. Corrosion Science, 2008. 50(7): pp. 1939-1953.
40. Ambat, R., Aung, N. N., and Zhou, W., Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion Science, 2000. 42(8): pp. 1433-1455.
41. Mjoberg, B., Hellquist, E., Mallmin, H., and Lindh, U., Aluminum, Alzheimer's disease and bone fragility. Acta Orthopaedica Scandinavica, 1997. 68(6): pp. 511-514.
42. Montoya, R., Iglesias, C., Escudero, M. L., and Garcia-Alonso, M. C., Modeling in vivo corrosion of AZ31 as temporary biodegradable implants. Experimental validation in rats. Materials Science & Engineering C-Materials for Biological Applications, 2014. 41: pp. 127-133.
43. Gao, X. and Nie, J. F., Characterization of strengthening precipitate phases in a Mg-Zn alloy. Scripta Materialia, 2007. 56(8): pp. 645-648.
44. Zhang, S. X., Zhang, X. N., Zhao, C. L., Li, J. A., Song, Y., Xie, C. Y., Tao, H. R., Zhang, Y., He, Y. H., Jiang, Y., and Bian, Y. J., Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia, 2010. 6(2): pp. 626-640.
45. Cai, S. H., Lei, T., Li, N. F., and Feng, F. F., Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Materials Science & Engineering C-Materials for Biological Applications, 2012. 32(8): pp. 2570-2577.
46. Cao, P., Qian, M., and StJohn, D. H., Native grain refinement of magnesium alloys. Scripta Materialia, 2005. 53(7): pp. 841-844.
47. Sun, Y., Zhang, B. P., Wang, Y., Geng, L., and Jiao, X. H., Preparation and characterization of a new biomedical Mg-Zn-Ca alloy. Materials & Design, 2012. 34: pp. 58-64.
48. Lee, Y. C., Dahle, A. K., and StJohn, D. H., The role of solute in grain refinement of magnesium. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2000. 31(11): pp. 2895-2906.
49. Sun, M., Wu, G. H., Wang, W., and Ding, W. J., Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009. 523(1-2): pp. 145-151.
50. Murai, T., Matsuoka, S., Miyamoto, S., and Oki, Y., Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions. Journal of Materials Processing Technology, 2003. 141(2): pp. 207-212.
51. Watanabe, H., Mukai, T., and Ishikawa, K., Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy. Journal of Materials Processing Technology, 2007. 182(1-3): pp. 644-647.
52. Wang, B. S., Xin, R. L., Huang, G. J., and Liu, Q., Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2012. 534: pp. 588-593.
53. Yamashita, A., Horita, Z., and Langdon, T. G., Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2001. 300(1-2): pp. 142-147.
54. Czerwinski, F., The oxidation behaviour of an AZ91D magnesium alloy at high temperatures. Acta Materialia, 2002. 50(10): pp. 2639-2654.
55. Galiyev, A., Kaibyshev, R., and Gottstein, G., Correlation of plastic deformation and dynamic recrystallization in magnesium alloy Zk60. Acta Materialia, 2001. 49(7): pp. 1199-1207.
56. Hansen, N., Hall-Petch relation and boundary strengthening. Scripta Materialia, 2004. 51(8): pp. 801-806.
57. Mann, G., Griffiths, J. R., and Caceres, C. H., Hall-Petch parameters in tension and compression in cast Mg-2Zn alloys. Journal of Alloys and Compounds, 2004. 378(1-2): pp. 188-191.
58. Ben Hamu, G., Eliezer, D., and Wagner, L., The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 2009. 468(1-2): pp. 222-229.
59. Orlov, D., Ralston, K. D., Birbilis, N., and Estrin, Y., Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Materialia, 2011. 59(15): pp. 6176-6186.
60. Bussiba, A., Ben Artzy, A., Shtechman, A., Ifergan, S., and Kupiec, M., Grain refinement of AZ31 and ZK60 Mg alloys - towards superplasticity studies. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2001. 302(1): pp. 56-62.
61. Lin, J. B., Wang, Q. D., Peng, L. M., and Roven, H. J., Microstructure and high tensile ductility of ZK60 magnesium alloy processed by cyclic extrusion and compression. Journal of Alloys and Compounds, 2009. 476(1-2): pp. 441-445.
62. Gu, X. N., Li, N., Zheng, Y. F., and Ruan, L. Q., In vitro degradation performance and biological response of a Mg-Zn-Zr alloy. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2011. 176(20): pp. 1778-1784.
63. Zhou, W., Shen, T., and Aung, N. N., Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid. Corrosion Science, 2010. 52(3): pp. 1035-1041.
64. Chang, J. W., Guo, X. W., Fu, P. H., Peng, L. M., and Ding, W. J., Effect of heat treatment on corrosion and electrochemical behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy. Electrochimica Acta, 2007. 52(9): pp. 3160-3167.
65. Hutchinson, C. R., Nie, J. F., and Gorsse, S., Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2005. 36A(8): pp. 2093-2105.
66. Song, G. L., Bowles, A. L., and StJohn, D. H., Corrosion resistance of aged die cast magnesium alloy AZ91D. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004. 366(1): pp. 74-86.
67. Lunder, O., Lein, J. E., Aune, T. K., and Nisancioglu, K., The role of Mg17Al12 Phase in the Corrosion of Mg Alloy AZ91. Corrosion, 1989. 45(9): pp. 741-748.
68. Gray, J. E. and Luan, B., Protective coatings on magnesium and its alloys - a critical review. Journal of Alloys and Compounds, 2002. 336(1-2): pp. 88-113.
69. Chen, X. B., Birbilis, N., and Abbott, T. B., Review of corrosion-resistant conversion coatings for magnesium and its alloys. Corrosion, 2011. 67(3).
70. Zhou, W. Q., Shan, D. Y., Han, E. H., and Ke, W., Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy. Corrosion Science, 2008. 50(2): pp. 329-337.
71. Zucchi, F., Frignani, A., Grassi, V., Trabanelli, G., and Monticelli, C., Stannate and permanganate conversion coatings on AZ31 magnesium alloy. Corrosion Science, 2007. 49(12): pp. 4542-4552.
72. Chiu, K. Y., Wong, M. H., Cheng, F. T., and Man, H. C., Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surface & Coatings Technology, 2007. 202(3): pp. 590-598.
73. Bakhsheshi-Rad, H. R., Idris, M. H., Kadir, M. R. A., and Daroonparvar, M., Effect of fluoride treatment on corrosion behavior of Mg-Ca binary alloy for implant application. Transactions of Nonferrous Metals Society of China, 2013. 23(3): pp. 699-710.
74. Drynda, A., Hassel, T., Hoehn, R., Perz, A., Bach, F. W., and Peuster, M., Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications. Journal of Biomedical Materials Research Part A, 2010. 93A(2): pp. 763-775.
75. Kirkland, N. T., Birbilis, N., and Staiger, M. P., Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomaterialia, 2012. 8(3): pp. 925-936.
76. Stern, M. and Geary, A. L., Electrochemical Polarization .1. A Theoretical Analysis of the Shape of Polarization Curves. Journal of the Electrochemical Society, 1956. 103(9): pp. C205-C205.
77. Hara, N., Kobayashi, Y., Kagaya, D., and Akao, N., Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions. Corrosion Science, 2007. 49(1): pp. 166-175.
78. Ralston, K. D. and Birbilis, N., Effect of Grain Size on Corrosion: A Review. Corrosion, 2010. 66(7).
79. Song, G. L. and Atrens, A., Understanding magnesium corrosion - A framework for improved alloy performance. Advanced Engineering Materials, 2003. 5(12): pp. 837-858.
80. Liu, C. L., Wang, Y. J., Zeng, R. C., Zhang, X. M., Huang, W. J., and Chu, P. K., In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin. Corrosion Science, 2010. 52(10): pp. 3341-3347.
81. Hanzi, A. C., Gerber, I., Schinhammer, M., Loffler, J. F., and Uggowitzer, P. J., On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomaterialia, 2010. 6(5): pp. 1824-1833.
82. Mclean, R. M., Magnesium and its therapeutic uses - a review. American Journal of Medicine, 1994. 96(1): pp. 63-76.
83. Zhao, N. and Zhu, D. H., Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials. Metallomics, 2015. 7(1): pp. 113-123.
84. Lange, T. S., Kirchberg, J., Bielinsky, A. K., Leuker, A., Bank, I., Ruzicka, T., and Scharffetter-Kochanek, K., Divalent cations (Mg2+, Ca2+) differentially influence the beta 1 integrin-mediated migration of human fibroblasts and keratinocytes to different extracellular matrix proteins. Exp Dermatol, 1995. 4(3): pp. 130-7.
85. Grzesiak, J. J. and Pierschbacher, M. D., Changes in the concentrations of extracellular Mg2+ and Ca2+ down-regulate E-cadherin and up-regulate alpha 2 beta 1 integrin function, activating keratinocyte migration on type I collagen. J Invest Dermatol, 1995. 104(5): pp. 768-74.
86. Zhang, Z., Tremblay, R., and Dube, D., Microstructure and mechanical properties of ZA104 (0.3-0.6Ca) die-casting magnesium alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004. 385(1-2): pp. 286-291.
87. Zhang, E. L. and Yang, L., Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 497(1-2): pp. 111-118.
88. Zhang, J., Guo, Z. X., Pan, F. S., Li, Z. S., and Luo, X. D., Effect of composition on the microstructure and mechanical properties of Mg-Zn-Al alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2007. 456(1-2): pp. 43-51.
89. Eskin, D. G., Suyitno, and Katgerman, L., Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Progress in Materials Science, 2004. 49(5): pp. 629-711.
90. Witte, F., Fischer, J., Nellesen, J., Crostack, H. A., Kaese, V., Pisch, A., Beckmann, F., and Windhagen, H., In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006. 27(7): pp. 1013-1018.
91. Song, G. L., Johannesson, B., Hapugoda, S., and StJohn, D., Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc. Corrosion Science, 2004. 46(4): pp. 955-977.
92. Cain, T., Madden, S. B., Birbilis, N., and Scully, J. R., Evidence of the enrichment of transition metal elements on corroding magnesium surfaces using Rutherford backscattering spectrometry. Journal of the Electrochemical Society, 2015. 162(6): pp. C228-C237.
93. Fischer, J., Profrock, D., Hort, N., Willumeit, R., and Feyerabend, F., Improved cytotoxicity testing of magnesium materials. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2011. 176(11): pp. 830-834.
94. Yoshizawa, S., Brown, A., Barchowsky, A., and Sfeir, C., Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomaterialia, 2014. 10(6): pp. 2834-2842.
95. Fang, Y., Wang, L. P., Du, F. L., Liu, W. J., and Ren, G. L., Effects of insulin-like growth factor I on alveolar bone remodeling in diabetic rats. Journal of Periodontal Research, 2013. 48(2): pp. 144-150.
96. Bellucci, D., Sola, A., Cacciotti, I., Bartoli, C., Gazzarri, M., Bianco, A., Chiellini, F., and Cannillo, V., Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: synthesis, microstructure and biological responsiveness. Materials Science & Engineering C- Materials for Biological Application, 2014. 42: pp. 312-24.
97. Yan, J., Chen, Y. G., Yuan, Q. L., Yu, S., Qiu, W. C., Yang, C. G., Wang, Z. G., Gong, J. F., Ai, K. X., Zheng, Q., Li, J. N., Zhang, S. X., and Zhang, X. N., Comparison of the effects of Mg-6Zn and titanium on intestinal tract in vivo. Journal of Materials Science-Materials in Medicine, 2013. 24(6): pp. 1515-1525.
98. Sikora, E. and Macdonald, D. D., Nature of the passive film on nickel. Electrochimica Acta, 2002. 48(1): pp. 69-77.
99. Yan, T. T., Tan, L. L., Xiong, D. S., Liu, X. J., Zhang, B. C., and Yang, K., Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy. Materials Science & Engineering C-Materials for Biological Applications, 2010. 30(5): pp. 740-748.
100. Fouladi, M. and Amadeh, A., Effect of phosphating time and temperature on microstructure and corrosion behavior of magnesium phosphate coating. Electrochimica Acta, 2013. 106: pp. 1-12.
101. Jorcin, J. B., Orazem, M. E., Pebere, N., and Tribollet, B., CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 2006. 51(8-9): pp. 1473-1479.
102. Razavi, M., Fathi, M., Savabi, O., Beni, B. H., Vashaee, D., and Tayebi, L., Nanostructured merwinite bioceramic coating on Mg alloy deposited by electrophoretic deposition. Ceramics International, 2014. 40(7): pp. 9473-9484.
103. Pinto, R., Ferreira, M. G. S., Carmezim, M. J., and Montemor, M. F., The corrosion behaviour of rare-earth containing magnesium alloys in borate buffer solution. Electrochimica Acta, 2011. 56(3): pp. 1535-1545.
104. Dodge, M. J., Refractive properties of magnesium fluoride. Journal of the Optical Society of America, 1979. 69(10): pp. 1460-1460.
105. Wan, Y. M., Samundsett, C., Bullock, J., Allen, T., Hettick, M., Yan, D., Zheng, P. T., Zhang, X. Y., Cui, J., McKeon, J., Javey, A., and Cuevas, A., Magnesium fluoride electron-selective contacts for crystalline silicon solar cells. Acs Applied Materials & Interfaces, 2016. 8(23): pp. 14671-14677.
106. Dhungel, S. K., Yoo, J., Kim, K., Jung, S., Ghosh, S., and Yi, J., Double-layer antireflection coating of MgF2/SiNx for crystalline silicon solar cells. Journal of the Korean Physical Society, 2006. 49(3): pp. 885-889.
107. Aggerbeck, M., Junker-Holst, A., Nielsen, D. V., Gudla, V. C., and Ambat, R., Anodisation of sputter deposited aluminium-titanium coatings: Effect of microstructure on optical characteristics. Surface & Coatings Technology, 2014. 254: pp. 138-144.
108. Isa, Z. M., Schneider, G. B., Zaharias, R., Seabold, D., and Stanford, C. M., Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression. International Journal of Oral & Maxillofacial Implants, 2006. 21(2): pp. 203-211.
109. Zhao, J. H., Reiske, H., and Guan, J. L., Regulation of the cell cycle by focal adhesion kinase. Journal of Cell Biology, 1998. 143(7): pp. 1997-2008.
110. Chou, Y. C., Hsu, Y. H., Cheng, C. Y., and Wu, C. C., Percutaneous Screw and Axial Kirschner Wire Fixation for Acute Transscaphoid Perilunate Fracture Dislocation. Journal of Hand Surgery-American Volume, 2012. 37A(4): pp. 715-720.
111. Antabak, A., Papes, D., Haluzan, D., Seiwerth, S., Fuchs, N., Romic, I., Davila, S., and Luetic, T., Reducing damage to the periosteal capillary network caused by internal fixation plating: An experimental study. Injury-International Journal of the Care of the Injured, 2015. 46: pp. S18-S20.
112. Dayton, P., Feilmeier, M., and Coleman, N., Principles of Management of Growth Plate Fractures in the Foot and Ankle. Clinics in Podiatric Medicine and Surgery, 2013. 30(4): pp. 583-589.
113. Namba, R. S., Kabo, J. M., and Meals, R. A., Biomechanical effects of point configuration in Kirschner-wire fixation. Clinical Orthopaedics and Related Research, 1987(214): pp. 19-22.
114. Lucke, M., Wildemann, B., Sadoni, S., Surke, C., Schiller, R., Stemberger, A., Raschke, M., Haas, N. P., and Schmidmaier, G., Systemic versus local application of gentamicin in prophylaxis of implant-related osteomyelitis in a rat model. Bone, 2005. 36(5): pp. 770-778.
115. Hargreaves, D. G., Drew, S. J., and Eckersley, R., Kirschner wire pin tract infection rates: A randomized controlled trial between percutaneous and buried wires. Journal of Hand Surgery-British and European Volume, 2004. 29B(4): pp. 374-376.
116. Weigel, C., Bragger, U., Hammerle, C. H. F., Mombelli, A., and Lang, N. P., Maintenance of new attachment 1 and 4 years following guided tissue regeneration (GTR). Journal of Clinical Periodontology, 1995. 22(9): pp. 661-669.
117. Al Salamah, L. and Babay, N., Guided bone regeneration using resorbable and nonresorbable membranes: A histologic evaluation in beagle dogs. Journal of Dental Research, 2000. 79(5): pp. 1279-1279.
118. Park, S. S., You, B. S., and Yoon, D. J., Effect of the extrusion conditions on the texture and mechanical properties of indirect-extruded Mg-3Al-1Zn alloy. Journal of Materials Processing Technology, 2009. 209(18-19): pp. 5940-5943.
119. Zhang, X. B., Wang, Z. Z., Yuan, G. Y., and Xue, Y. J., Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2012. 177(13): pp. 1113-1119.
120. Prasad, Y. V. R. K. and Rao, K. P., Hot deformation mechanisms and microstructural control in high-temperature extruded AZ31 magnesium alloy. Advanced Engineering Materials, 2007. 9(7): pp. 558-565.
121. Cheng, W. L., Kim, H. S., You, B. S., Koo, B. H., and Park, S. S., Strength and ductility of novel Mg-8Sn-1Al-1Zn alloys extruded at different speeds. Materials Letters, 2011. 65(11): pp. 1525-1527.
122. Bhattacharjee, T., Mendis, C. L., Sasaki, T. T., Ohkubo, T., and Hono, K., Effect of Zr addition on the precipitation in Mg-Zn-based alloy. Scripta Materialia, 2012. 67(12): pp. 967-970.
123. Li, Y., Zhang, T., and Wang, F. H., Effect of microcrystallization on corrosion resistance of AZ91D alloy. Electrochimica Acta, 2006. 51(14): pp. 2845-2850.
124. Bansal, P., Padture, N. P., and Vasiliev, A., Improved interfacial mechanical properties of Al2O3-13wt%TiO2 plasma-sprayed coatings derived from nanocrystalline powders. Acta Materialia, 2003. 51(10): pp. 2959-2970.
125. Winzer, N., Atrens, A., Dietzel, W., Song, G. L., and Kainer, K. U., Stress Corrosion Cracking (SCC) in Mg-Al alloys studied using compact specimens. Advanced Engineering Materials, 2008. 10(5): pp. 453-458.
126. Zhang, Y. K., You, J. A., Lu, J. Z., Cui, C. Y., Jiang, Y. F., and Ren, X. D., Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy. Surface & Coatings Technology, 2010. 204(24): pp. 3947-3953.
127. Winzer, N., Atrens, A., Song, G. L., Ghali, E., Dietzel, W., Kainer, K. U., Hort, N., and Blawert, C., A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Advanced Engineering Materials, 2005. 7(8): pp. 659-693.
校內:2057-07-31公開