簡易檢索 / 詳目顯示

研究生: 陳信安
Chen, Hsin-An
論文名稱: 微細銅導線氧化微觀組織及接合界面通電特性探討
The Study on Oxidation Microstructure and Bonding Electrification Characteristic of Fine Copper Wire
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 66
中文關鍵詞: 銅線打線接合接合通電
外文關鍵詞: copper wire, wire bond, bonding electrification
相關次數: 點閱:147下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅線除了成本低,還有優良的導電性及導熱性,在打線接合製程中有逐漸取代金線的趨勢,本研究以銅線實際應用在封裝製程為基準,探討銅線氧化組織變化及界面接合通電特性分析。首先,銅線本身的氧化會導致放電結球時大量的氧原子溶入銅球內,造成結球組織出現樹枝狀結構,此外,氧化時所產生的氧化物 (Cu2O) 使得銅線結球端整體的硬度上升,當銅球在下壓至鋁基板接合時,可能使基板容易破裂而導致接合不良。
    本研究將市面上常用的兩種封裝樹脂1702HF及G770與銅線經過長時間的封裝測試960小時 (PCT 熱處理) 後發現,1702HF樹脂與銅線無明顯的界面層生成,而G770樹脂與銅線間有界面層生成,其生成原因為G770樹脂內部是屬於酸性環境,在此環境下樹脂中所含濕氣易與銅線反應生成界面層,此界面層的主要成分為Cu2O,界面層硬度及厚度分別為8~10 GPa 及0.5μm。樹脂界面層的厚度大小能決定銅線的有效截面積,可能直接地影響銅線的導電性。
    最後,將銅線打線接合在鋁基板上後,本研究進行一系列的通電試驗,實驗結果顯示通電前後銅線的抗拉強度及接合強度均無太大改變。另外,即使在通電5小時後,銅線與鋁基板接合界面處並無觀察到IMC層生成及電遷移的現象。

    Besides cost advantage, copper possesses higher electrical and thermal conductivity than gold. In wire bonding process, there is a trend using copper wire to replace gold wire. The aim of this study is to investigate the oxidized microstructure and bonding electrification characteristic of fine copper wire in the package process. When copper wire oxidizes, a large number of oxygen atoms dissolve into a copper ball during EFO process. The oxidation zone and dendritic structure were found in the oxidized ball composed of Cu and Cu2O. Because of Cu2O, the hardness of the oxidized ball is higher than non-oxidized. This may lead to the rupture of Al substrate and its poor bonding to copper wire.
    In this study, after 960 hours of PCT thermal treatment between copper and two common resins, G770 and 1702HF, no obvious interface layer was found between 1702HF and copper but an interface layer could be observed between G770 and copper because of the resin’s low PH and moisture. The thickness and hardness of interface layer are 0.5μm and 8~10 GPa respectively. However, due to the interface layer, the decreased cross section of copper wire could reduce the electrical conductivity of copper wire.
    As IMC layer and electro-migration could result in the reduced toughness of copper wire and its bondability to Al substrate, an electrical current was applied for five hours to test the bonding. In this study, there were no apparent variation in the pull strength and bonding strength of copper wire after applying electrical current. Moreover, also no IMC layer and electro-migration was observed in the Cu/Al bonding interface.

    總目錄 中文摘要 I 英文摘要 II 誌謝 III 總目錄 IV 圖目錄 VII 表目錄 X 第一章 前言 1 第二章 文獻回顧 2 2.1 打線接合技術 2 2.2 銅銲線製程 3 2.3 影響接合強度之參數 3 2.4 氧化處理 4 2.5 封裝製程 4 2.6 通電測試及金屬間化合物 5 第三章 實驗步驟及方法 11 3.1 銅線氧化處理 11 3.1.1 放電結球及打線接合 11 3.1.2 微觀組織觀察與奈米壓痕測試 12 3.2 樹脂包覆銅線與PCT處理 12 3.2.1 微觀組織觀察與奈米壓痕測試 13 3.3 銅線通電測試 13 3.3.1 微觀組織觀察及微硬度測量 13 3.3.2 拉力試驗 14 3.3.3 接合界面觀察 14 第四章 實驗結果 27 4.1 不同氧化條件下之結球組織 27 4.1.1 氧化微觀組織 27 4.1.2 氧化組織之奈米硬度 27 4.2 不同樹脂對銅線的影響 28 4.2.1 微觀組織 28 4.2.2 界面層之奈米硬度 28 4.3 通電對銅線打線接合的影響 29 4.3.1 微觀組織及微硬度 29 4.3.2 拉力測試結果 29 4.3.3 通電接合界面觀察 30 第五章 討論 49 5.1 銅線氧化效應 49 5.1.1 氧化區域的分布情形 49 5.1.2 氧化區域的硬度 50 5.2 樹脂界面層對銅線的影響 50 5.2.1 界面層之生成探討 50 5.2.2 G770樹脂界面層的厚度 51 5.3 銅線通電效應對接合強度的影響 52 5.3.1 IMC的形成機制 52 5.3.2 IMC層對接合強度的影響 52 5.3.3 電遷移效應 53 5.4 銅線應用在封裝製程上的考量 53 第六章 結論 61 參考文獻 63

    1.Herman, 「Wire Bonding in Microelectronics Materials, Processes, Reliability」 and Yield 2nd ed., McGraw-Hill (1997), pp 1-10.
    2.陳信文等編著,「電子構裝技術與材料」,中華民國93年發行。
    3.陳昭亮,張昫揚,「密集角距封裝之金線結球參數分析研究」,興大工程學刊,第十二卷,第二期(民國九十年),127-141頁。
    4.王元亭,「放電結球細微銅導線抗拉強度之韋伯解析研究」,國立成功大學材料科學與工程研究所碩士論文,民國九十四年。
    5.李志中,「線上熱處理銅導線經放電結球前後之微觀組織及拉伸性質探討」,國立成功大學材料科學與工程研究所碩士論文,民國九十五年。
    6.H.A. Mohamed, J. Washburn, “Mechanism of Solid State Pressure Welding”, Welding Journal, Vol. 54 (1975), pp 302-310.
    7.K.C. Joshi, “The Formation of Ultrasonic Bonds Between Metals”, Welding Journal, Vol. 50 (1971), pp 840-848.
    8.B. Langenecker, “Effects of Ultrasound on Deformation Characteristics of Metals”, IEEE Transactions of Sonics and Ultrasonics, Vol. SU-13, No. 1 (1966), pp 1-8.
    9.H. Saiki, Y. Marumo, H. Nishitake, T. Uemura, T. Yotsumoto, “Deformation Analysis of Au Wire Bonding”, Journal of Material Processing Technology, Vol. 177 (2006), pp 709-712.
    10.N. Srikanth, J. Premkumar, M. Sivakumar, Y.M. Wong, C.J. Vath, “Effect of Wire Purity on Copper Wire Bonding”, Electronics Packaging Technology Conference (2007), pp 755 - 759.
    11.R.R. Keller, R.H. Geiss, Y.W. Cheng, D.T. Read, “Microstructure Evolution during Electric Current Induced Thermomechanical Fatigue of Interconnects”, Materials Reliability Division, National Institute of Standards and Technology.
    12.J.H. Westbrook, R.L. Fleischer, “Intermetallic Compounds”, Vol.1 (2000), pp 91-125, 227-275
    13.S. Murali, N. Srinkanth, C.J. Vath III, “Effect of Wire Size on The Formation of Intermetallics and Kirkendall Voids on Thermal Aging of Thermosonic Wire Bonds”, Materials Letters, Vol. 58 (2004), pp 3096- 3101.
    14.S. Murali, N. Srikanth, C.J. Vath III, “An Analysis of Intermetallics Formation of Gold and Copper Ball Bonding on Thermal Aging”, Materials Research Bulletin, Vol. 38 (2003), pp 637-646.
    15.S. Murali, “Formation and Growth of Intermetallics in Thermosonic Wire Bonds: Significance of Vacancy–Solute Binding Energy”, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (2006), Singapore.
    16.C.W. Tan, D. Abdul Razak, “Mechanical and Electrical Properties of Au-Al and Cu-Al Intermetallics Layer at Wire Bonding Interface”, Journal of Electronic Packaging, Vol. 125 (2003), pp 617-620.
    17.H.J. Kim, J.Y. Lee, K.W. Paik, K.W. Koh, J. Won, S. Choe, J. Lee, J.T. Moon, Y.J. Park, “Effects of Cu/Al Intermetallic Compound (IMC) on Copper Wire and Aluminum Pad Bondability”, IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 2 (2003), pp 367-374.
    18.黃翊婷,「15μm級放電結球及打線接合微細銅導線之拉伸斷線特性探討」,國立成功大學材料科學與工程研究所碩士論文,民國九十八年。
    19.林宜璋,「不同退火條件織銅導線經放電結球前後之機械性質與織構分析」,國立成功大學材料科學與工程研究所碩士論文,民國九十六年。
    20.陳博彥,「微細銅導線放電結球特性與打線接合強度要因探討」,國立成功大學材料科學與工程研究所碩士論文,民國九十七年。
    21.K. Tatsumi, “Thermal Reliability of Gold-Aluminum Bonds Encapsulated in Bi-phenyl Epoxy Resin”, Advanced Materials &Technical Research Laboratories, Nippon Steel corporation, 3-35-1 Ida, Nakahara-ku, Kawasaki 211-0035, Japan.
    22.J.K. KIM, M. LEBBAI, J.H. LUI, J.H. KIM and M.M.F. YUEN, “Interface Adhesion Between Copper Lead frame and Epoxy Moulding Compound: Effect of Surface Finish, Oxidation and Dimples”, Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
    23.C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou, H.H Wang, “Growth Behavior of Cu/Al Intermetallic Compounds and Cracks in Copper Ball Bonds during Isothermal Aging”, State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001, China.
    24.T.C. Wei, “Mechanical and Electrical Properties of Au-Al and Cu-Al Intermetallics Layer at Wire Bonding Interface”, school of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
    25.F.W. Wulff, C. Breach, D. Stephan, Saraswati, K. Dittmer, “Further Characterisation of Intermatallic Growth in Copper and Gold Ball Bonds on Aluminium Metallisation”.
    26.J. Tao, N.W. Cheung, C. Hu, IEEE Electron Device Letters, Vol. 14 (1994), P.249.

    下載圖示 校內:2012-07-15公開
    校外:2012-07-15公開
    QR CODE