簡易檢索 / 詳目顯示

研究生: 林世強
Lin, Shih-Chiang
論文名稱: 利用新型生物強化反應器促進高氯戴奧辛生物降解研究
Enhanced Bioremediation of Highly Chlorinated Dioxins Using a Novel Bioaugmented Reactor
指導教授: 吳哲宏
Wu, Jer-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 127
中文關鍵詞: 高氯戴奧辛堆肥生物強化微生物分析
外文關鍵詞: Highly Chlorinated Dioxins, Compost, Bioaugmentation, Microbial Community
相關次數: 點閱:179下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 戴奧辛是由75種PCDDs及135種PCDFs所組成,主要是因為在含氯的環境下由人為或自然的燃燒過程所排出,其也是工業製程的不純物。由於戴奧辛穩定且疏水性結構,不易分解而累積於土壤或是底泥中,再經過食物鏈生物放大效應,最後蓄積於生物體內,對人類及其他高等生物的健康有很大的風險。因此,受戴奧辛污染的土壤必須積極清理整治。本研究發展一套新型生物強化土壤發酵反應器系統,控制間歇曝氣、水循環及週期性地添加營養鹽等條件下,分別評估八氯戴奧辛降解菌劑及堆肥對於戴奧辛生物毒性去除的影響。
    本研究首先建立四組實驗室規模反應器系統,藉此了解在不同pH下對戴奧辛生物降解之影響。研究結果指出在反應器系統間歇曝氣及添加適量營養鹽等條件下,控制在鹼性環境(pH 8.5)且添加戴奧辛降解菌劑的反應槽R3對於戴奧辛的總毒性當量及高氯(7-8氯)戴奧辛同源物在2個月內分別有72 %及88-99 %的去除率,高於中性環境(pH 7.5)且無生物添加的反應槽R1 (47 %, 31-56 %)及菌劑添加的反應槽R4(34 %, 64-98 %)與酸性環境(pH 6.5)且提供菌劑添加的反應槽R2 (39 %, 43-50 %),顯示生物強化土壤發酵系統在偏鹼環境下能最快達到高氯戴奧辛的去毒化效果。在R3反應槽中發現第56天有66%的OCDF轉換成1,2,3,7,8,9-HxCDF,另外R4反應槽亦有脫氯轉換出現,說明此生物程序的設計與條件控制可使八氯戴奧辛發生還原脫氯反應。結合定量PCR與高通量焦磷酸定序技術分析土壤中菌群結構發現添加的戴奧辛降解菌的菌量在14天內下降約100倍,另外戴奧辛毒性當量的去除效率與土壤中之Sedimentibacter 、 Brevundimonas 及Clostridium XI等厭氧或兼性厭氧菌群相對豐富度增加有相當的關聯性。
    第二階段首先以批次實驗測試不同種類堆肥對於戴奧辛生物降解之可行性。利用不同種類的堆肥,如牛糞堆肥(CM)、廚餘堆肥(KW)、落葉堆肥(L)、豬糞堆肥(PM)以及廢水污泥堆肥(SSL),以等重量比例分別加入戴奧辛污染土壤中,震盪培養30天以後,雙重分析結果顯示: 相對於控制組,土壤戴奧辛化合物降解率分別達30.5 %、17.4 %、41.4 %、25.4 %以及60 %,顯示添加堆肥後污染土壤中之戴奧辛同源物與毒性當量皆有減少,並發現T-RF片段長度為136 bp、158 bp、189 bp及211 bp等四類不同的外源菌群在經過30天培養後被優勢出,可推測這些菌群均能耐高濃度的戴奧辛而脫穎而出,並在土壤戴奧辛化合物降解過程中扮演著重要的角色。爾後選擇污泥堆肥及牛糞堆肥進行反應器系統戴奧辛生物降解試驗。
    反應器系統在控制間歇曝氣及定時水循環之條件下,同時添加5%污泥堆肥及5%牛糞堆肥之反應槽R7在兩個月內有效促進戴奧辛毒性當量減少約74%,而不添加堆肥的反應槽R5及10 %污泥堆肥添加反應槽R6在兩個月內分別減少約70 %及42 %之戴奧辛毒性當量,並發現三組反應槽於42天後皆有4氯戴奧辛些微生成之情形,提供了出現還原脫氯的證據。在本系統中以LC-ESI-MS/MS分析代謝產物發現水楊酸、鄰苯二酚、酚、甲基水楊酸及二氯苯甲酸等物質的存在,也提供了戴奧辛生物降解的證據。
    本研究展示了利用新型生物強化土壤發酵反應槽在適當條件控制下能夠促進高氯戴奧辛快速生物降解而去毒化,這些研究成果未來可推廣應用於實場中。

    Polychlorinated dioxins consisting of 75 polychlorinated-p-dioxins (PCDDs) and 135 polychlorinated dibenzofurans (PCDFs) are mostly released to the ecosystems from the natural and anthropogenic combustion processes as well as industrial sectors with the environment containing chlorines. PCDD/Fs can persist in the soil and sediment because of their stability and hydrophobicity, which in turn accumulate significantly in the human beings and higher organisms after biomagnifications via the food chain. Therefore, these are listed among the persisting organic pollutants that are highly risky to the living organisms. In this study, we developed a novel bioaugmented reactor system with intermittently aeration and recirculation to evaluate the feasibility on dioxin biodegradation by bacterial agent and compost amendment respectively.
    Four laboratory-scale reactors were established to study the effect of pH on the dioxin degradation. The results showed that the bioaugmented reactor R3 that was operated at pH 8.5 could have higher removal efficiency of total toxicity equivalency (72%) and individual congeners (88%-99%) than non-bioaugmented reactor R1 (47%, 31-56%), bioaugmented R4 (34 %, 64-98 %) and bioaugmented R2 (39%, 43-50%) that were operated at pH 7.5 and 6.5, respectively, suggesting that the effectiveness of adding bacterial agents at the alkaline conditions. In the Reactor R3, we observed that 66% of OCDF has been dechlorinated into 1,2,3,7,8,9-HxCDF in 56 days, and caused toxic equivalent raising (removal efficiency from 86% to 72%) from between 31 and 56 days during operation. Within reactor R3, it was found that the added populations declined grately, while the microbial community was composed of members affiliated with Actionbacteria, Proteobacteria, and Firmicutes. In particular, the removal of polychlorinated dioxins was likely associated with increase the population of Sedimentibacter, Brevundimonas and Clostridium XI.
    Five different matured composts namely, cow manure (CM), kitchen waste (KW), leaf (L), pig manure (PM) and sewage sludge (SSL) were individually mixed with dioxins-contaminated soil with 1:1 ratio (w/w), and incubated under aerobic conditions for one month. The duplicated analysis showed that in comparison with the control experiment, the removal efficiencies of dioxins achieved 30.5 % for compost CM, 17.4 % for compost KW, 41.4 % for compost L, 25.4 % for compost PM and 60% for compost SSL, respectively. The results reveal that both dioxin congeners and overall toxicity equivalency in soil decrease significantly showing the enhancement of biodegradation performance. It was observed that the key microbes with T-RF lengths of 136 bp, 158 bp, 189 bp and 211 bp were enriched from the system with a high concentration of dioxins after 30 days incubation, and might play an important role in the degradation of dioxins in soil.
    The compost bioaugmented reactor R7 that was operated both 5% SSL and 5% CM compost amendment could have higher removal efficiency of total toxicity equivalency (74%) than non-bioaugmented reactor R5 (70%) and bioaugmented R6 (42%) by 10% SSL compost amendment. Phenol, catechol, salicylic acid, methyl salicylate and dichlorobenzoic acid as metabolic product identified from positive and negative model by LC-ESI-MS/MS provided the evidences for dioxins biodegradation in our research.
    Overall, our results demonstrated that biodegradation of highly chlorinated dioxins can be enhanced with bacterial agents and nutrient supplied in our novel bioaugmented reactor system. The parameters and relevant knowledge obtained from this study can be valuable for future applications.

    摘 要 II Abstract IV 誌 謝 VI 目 錄 VII 表目錄 XII 圖目錄 XIII 第一章 前 言 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 戴奧辛化合物 3 2.1.1 戴奧辛的特性 3 2.1.2 戴奧辛污染來源 4 2.1.3 戴奧辛之毒性及其危害 4 2.2 高氯戴奧辛同源物 5 2.2.1 高氯戴奧辛的生成機制 5 2.2.2 高氯戴奧辛污染場址 6 2.3 戴奧辛處理技術 7 2.3.1 物化處理技術 8 2.3.2 生物復育技術 8 2.3.2.1 生物復育技術之優勢 9 2.3.2.2 生物復育整治概念 9 2.4 生物降解戴奧辛化合物 11 2.4.1 好氧降解戴奧辛同源物 11 2.4.2 厭氧還原脫氯戴奧辛 13 2.4.3 真菌降解戴奧辛化合物 16 2.5 類戴奧辛化合物生物處理技術 18 2.5.1 結合化學及生物處理程序 18 2.5.2 掩埋處理程序 19 2.5.3 堆肥於生物復育之應用 20 2.5.4 半好氧(Semi-aerobic)處理技術 22 2.6 先導研究 25 2.7 本章總結 26 第三章 研究方法 27 3.1 中石化安順廠土壤環境條件 27 3.2 限制土壤中戴奧辛同源物生物降解之問題分析 28 3.3土壤中高氯戴奧辛微生物代謝途徑假說 29 3.4研究策略 31 3.5研究架構 32 第四章 實驗材料與方法 33 4.1 土壤及堆肥樣本來源 33 4.2 堆肥特性分析 33 4.3 新型生物添加反應器系統設計 34 4.3.1 高氯戴奧辛分解菌劑添加試程 34 4.3.1.1 反應槽系統操作條件 34 4.3.1.2 菌劑製備 36 4.3.1.3 土壤樣本製備 36 4.3.1.4 土壤採樣與保存 36 4.3.2 堆肥添加試程 37 4.3.2.1 堆肥篩選批次實驗 37 4.3.2.2反應槽系統操作條件 38 4.3.2.3土壤樣本製備 39 4.3.2.4 土壤採樣與保存 39 4.4 土壤DNA萃取 40 4.5分子生物分析方法 40 4.5.1聚合酶鏈鎖反應( Polymerase Chain Reactions, PCR ) 40 4.5.2瓊酯膠電泳 41 4.5.3末端限制酶片段長度多型性( Terminal Restriction Fragment Length Polymorphism, TRFLP ) 42 4.5.4毛細管電泳 42 4.5.5分子選殖( Cloning ) 43 4.5.6 DNA序列分析 43 4.5.7即時定量聚合酶鏈鎖反應( Quantitative real-time Polymerase Chain Reactions, q-PCR ) 43 4.5.8焦磷酸定序技術( Pyrosequencing ) 44 4.6戴奧辛分析方法 45 4.6.1土壤樣本戴奧辛萃取 45 4.6.2戴奧辛分析 46 4.6.2.1高解析度氣相層析儀之操作 46 4.6.2.2高解析度質譜儀之操作 46 4.7 代謝產物分析 47 4.7.1 HPLC分離條件 47 4.7.2 質譜分析條件 47 第五章 結果與討論 48 5.1菌劑添加於新型反應器之戴奧辛降解試驗 48 5.1.1 含水率隨時間變化 48 5.1.2 土壤中菌群數量變化 49 5.1.3 土壤中戴奧辛生物降解之探討 50 5.1.4 土壤中菌群結構變化 54 5.1.4.1焦磷酸定序結果 54 5.1.4.2生物添加菌劑與戴奧辛去毒化之效果 58 5.1.4.3微生物菌群結構的改變與戴奧辛去毒化之效果 59 5.1.4.4戴奧辛生物降解時期微生物結構比較 64 5.1.5 戴奧辛降解與菌群結構之相關性分析 67 5.1.6 功能性基因篩選分析 69 5.1.7 功能性基因定量分析 70 5.2堆肥添加批次實驗 75 5.2.1 不同堆肥特性之分析 75 5.2.2 不同堆肥添加之戴奧辛批次降解測試 76 5.2.2.1土壤中菌群數量變化 76 5.2.2.2土壤中菌群結構變化 77 5.2.2.3戴奧辛生物降解探討 81 5.2.3 戴奧辛降解與堆肥特性之相關性分析 85 5.3堆肥添加於新型反應器之戴奧辛降解試驗 87 5.3.1 氧化還原電位(ORP)隨時間變化 87 5.3.2 土壤中菌群數量隨時間變化 88 5.3.3 土壤中戴奧辛生物降解之探討 90 5.3.4 功能性基因定量分析 92 5.4代謝產物分析 95 5.5綜合討論 99 第六章 結論與建議 102 6.1 結論 102 6.2 建議 104 參考文獻 105 附錄 112

    Abraham WR, Nogales B, Golyshin PN, Pieper DH & Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5: 246-253.
    Adriaens P & Grbicgalic D (1994) Reductive Dechlorination of Pcdd/F by Anaerobic Cultures and Sediments. Chemosphere 29: 2253-2259.
    Adriaens P, Chang PR & Barkovskii AL (1996) Dechlorination of PCDD/F by organic and inorganic electron transfer molecules in reduced environments. Chemosphere 32: 433-441.
    Ahlborg UG, Brouwer A, Fingerhut MA, et al. (1992) Impact of Polychlorinated Dibenzo-P-Dioxins, Dibenzofurans, and Biphenyls on Human and Environmental-Health, with Special Emphasis on Application of the Toxic Equivalency Factor Concept. Eur J Pharm-Environ 228: 179-199.
    Aronstein BN, Paterek JR, Kelley RL & Rice LE (1995) The Effect of Chemical Pretreatment on the Aerobic Microbial-Degradation of Pcb Congeners in Aqueous Systems. J Ind Microbiol 15: 55-59.
    Augenstein D, Morck R, Pacey J, Reinhart D & Yazdani R (1998) White paper: The bioreactor landfill an innovation in solid waste management. Proceedings from Swana's 3rd Annual Landfill Symposium 173-180.
    Beurskens JEM, Toussaint M, Dewolf J, Vandersteen JMD, Slot PC, Commandeur LCM & Parsons JR (1995) Dehalogenation of Chlorinated Dioxins by an Anaerobic Microbial Consortium from Sediment. Environ Toxicol Chem 14: 939-943.
    Bicca FC, Fleck LC & Ayub MAZ (1999) Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Revista De Microbiologia 30: 231-236.
    Billingsley KA, Backus SM, Wilson S, Singh A & Ward OP (2002) Remediation of PCBs in soil by surfactant washing and biodegradation in the wash by Pseudomonas sp LB400. Biotechnol Lett 24: 1827-1832.
    Bokare V, Murugesan K, Kim JH, Kim EJ & Chang YS (2012) Integrated hybrid treatment for the remediation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Sci Total Environ 435: 563-566.
    Boonchan S, Britz ML & Stanley GA (1998) Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnol Bioeng 59: 482-494.
    Bray RH & Kurtz LT (1945) Determination of Total, Organic, and Available Forms of Phosphorus in Soils. Soil Science 59: 39-45.
    Bunge M & Lechner U (2009) Anaerobic reductive dehalogenation of polychlorinated dioxins. Appl Microbiol Biotechnol 84: 429-444.
    Bunge M, Adrian L, Kraus A, et al. (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421: 357-360.
    Cassidy D, Hampton D & Kohler S (2002) Combined chemical (ozone) and biological treatment of polychlorinated biphenyls (PCBs) adsorbed to sediments. J Chem Technol Biot 77: 663-670.
    Chang YS (2008) Recent developments in microbial biotransformation and biodegradation of dioxins. J Mol Microbiol Biotechnol 15: 152-171.
    Colquhoun DR, Hartmann EM & Halden RU (2012) Proteomic Profiling of the Dioxin-Degrading Bacterium Sphingomonas wittichii RW1. J Biomed Biotechnol.
    Coronado E, Roggo C, Johnson DR & van der Meer JR (2012) Genome-Wide Analysis of Salicylate and Dibenzofuran Metabolism in Sphingomonas Wittichii RW1. Front Microbiol 3: 300.
    Dwernychuk LW, Cau HD, Hatfield CT, Boivin TG, Hung TM, Dung PT & Thai ND (2002) Dioxin reservoirs in southern Viet Nam--a legacy of Agent Orange. Chemosphere 47: 117-137.
    Eaton, D. A, Franson & H. MA (2005) Standard Methods for the Examination of Water and Wastewater (21 ed.). American Public Health Association.
    EPA T (2002) S280.62C,土壤及底泥水分含量測定方法-重量法. 行政院環境保護署環境檢驗所檢測方法.
    EPA T (2008) NIEA S410.62C-土壤酸鹼值(pH 值)測定方法-電極法. 行政院環境保護署環境檢驗所檢測方法.
    Fetzner S (1998) Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl Microbiol Biotechnol 49: 237-250.
    Fiedler H, Hutzinger O & Timms CW (1990) Dioxins - Sources of Environmental Load and Human Exposure. Toxicol Environ Chem 29: 157-234.
    Field JA & Sierra-Alvarez R (2008) Microbial degradation of chlorinated dioxins. Chemosphere 71: 1005-1018.
    Fogarty AM & Tuovinen OH (1991) Microbiological Degradation of Pesticides in Yard Waste Composting. Microbiological Reviews 55: 225-233.
    Frankenberger WT (1992) The Need for a Laboratory Feasibility Study in Bioremediation of Petroleum-Hydrocarbons. Hydrocarbon Contaminated Soils and Groundwater, Vol 2 237-293.
    Frederick C. Michel Jr., John Quensen & C.A.Reddy (2001) Bioremediation of a PCB-Contaminated Siol Via Composting. Compost Sci Util 9: 274-283.
    Fukuda K, Nagata S & Taniguchi H (2002) Isolation and characterization of dibenzofuran-degrading bacteria. FEMS Microbiol Lett 208: 179-185.
    Gary Amendola DB, Russell Blosser, Larry LaFleur, Alexander McBride, Frank Thomas, Thomas Tiernan, Raymond Whittemore (1989) The occurrence and fate of PCDDs and PCDFs in five bleached kraft pulp and paper mills. Chemosphere 18: 1181-1188.
    Ha DTC (2010) Detoxification of herbicide/dioxin contaminated soil based on microbial diversity and their gene expression. 2nd Meeting of The Agent Orange Working Group.
    Habe H, Chung JS, Lee JH, Kasuga K, Yoshida T, Nojiri H & Omori T (2001) Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. Appl Environ Microbiol 67: 3610-3617.
    Haglund P (2007) Methods for treating soils contaminated with polychlorinated dibenzo-p-dioxins, dibenzofurans, and other polychlorinated aromatic compounds. Ambio 36: 467-474.
    Harry M. Freeman & Olexsey RA (1986) Treatment Technologies for Hazardous Wastes: Part 1 Treatment Alternatives for Dioxin Wastes. Journal of the Air Pollution Control Association 36: 67-75.
    Hendrickx B, Junca H, Vosahlova J, et al. (2006) Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J Microbiol Methods 64: 250-265.
    Hong HB, Chang YS, Nam IH, Fortnagel P & Schmidt S (2002) Biotransformation of 2,7-dichloro- and 1,2,3,4-tetrachlorodibenzo-p-dioxin by Sphingomonas wittichii RW1. Appl Environ Microbiol 68: 2584-2588.
    Hong HB, Nam IH, Murugesan K, Kim YM & Chang YS (2004) Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03. Biodegradation 15: 303-313.
    Huang CL, Harrison BK, Madura J & Dolfing J (1996) Gibbs free energies of formation of PCDDs: Evaluation of estimation methods and application for predicting dehalogenation pathways. Environ Toxicol Chem 15: 824-836.
    Ishii K & Furuichi T (2007) Development of bioreactor system for treatment of dioxin-contaminated soil using Pseudallescheria boydii. J Hazard Mater 148: 693-700.
    K Sei, KI Asano, Naohiro Tateishi, K Mori, M Ike & Fujita M (1999) Design of PCR primers and gene probes for the general detection of bacterial populations capable of degrading aromatic comounds via catechol cleavage pathways. J Biosci Bioeng 88: 542–550.
    Kaiya S, Utsunomiya S, Suzuki S, Yoshida N, Futamata H, Yamada T & Hiraishi A (2012) Isolation and Functional Gene Analyses of Aromatic-Hydrocarbon-Degrading Bacteria from a Polychlorinated-Dioxin-Dechlorinating Process. Microbes Environ 27: 127-135.
    Kang YS, Yamamuro M, Masunaga S & Nakanishi J (2002) Specific biomagnification of polychlorinated dibenzo-p-dioxins and dibenzofurans in tufted ducks (Aythya fuligula), common cormorants (Phalacrocorax carbo) and their prey from Lake Shinji, Japan. Chemosphere 46: 1373-1382.
    Kao CM & Wu MJ (2000) Enhanced TCDD degradation by Fenton's reagent preoxidation. J Hazard Mater 74: 197-211.
    Kastner M & Mahro B (1996) Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl Microbiol Biotechnol 44: 668-675.
    Kasuga I, Nakajima F & Furumai H (2007) Diversity of catechol 2,3-dioxygenase genes of bacteria responding to dissolved organic matter derived from different sources in a eutrophic lake. FEMS Microbiol Ecol 61: 449-458.
    Kearney PC, Woolson EA & Ellington CP (1972) Persistence and metabolism of chlorodioxins in soils. Environ. Sci. Technol. 6: 1017-1019.
    Keenan RE, Knight JW, Rand ER, Sauer MM, Found BW & Lawrence FH (1990) Assessing Potential Risks to Wildlife and Sportsmen from Exposure to Dioxin in Pulp and Paper-Mill Sludge Spread on Managed Woodlands. Chemosphere 20: 1763-1769.
    Kimura N & Urushigawa Y (2001) Metabolism of dibenzo-p-dioxin and chlorinated dibenzo-p-dioxin by a gram-positive bacterium, Rhodococcus opacus SAO 101. J Biosci Bioeng 92: 138-143.
    Kitauchi F, Hirano S-I, HARUKI M, IMANAKA T, MORIKAWA M & KANAYA S (2005) Comparison of Dibenzothiophene-Degrading Bacteria under Low Oxygen Conditions. J Environ Biol 4: 117–120.
    Kobayashi T, Murai Y, Tatsumi K & Iimura Y (2009) Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter from manure compost. Sci Total Environ 407: 5805-5810.
    Koch M, Knoth W & Rotard W (2001) Source identification of PCDD/Fs in a sewage treatment plant of a German village. Chemosphere 43: 737-741.
    Kulkarni PS, Crespo JG & Afonso CAM (2008) Dioxins sources and current remediation technologies - A review. Environ Int 34: 139-153.
    Kutz FW, Barnes DG, Bottimore DP, Greim H & Bretthauer EW (1990) The International Toxicity Equivalency Factor (I-Tef) Method of Risk Assessment for Complex-Mixtures of Dioxins and Related-Compounds. Chemosphere 20: 751-757.
    Laine MM & Jorgensen KS (1996) Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated soil. Appl Environ Microbiol 62: 1507-1513.
    Laine MM & Jorgensen KS (1997) Effective and safe composting of chlorophenol-contaminated soil in pilot scale. Environ Sci Technol 31: 371-378.
    Lane DJ (1991) 16S/23S rRNA sequencing. In M. G. E. Stackebrandt (ed.), Nucleic Acid Techniques in Bacterial Systematics. Wiley.
    Leander M, Vallaeys T & Fulthorpe R (1998) Amplification of putative chlorocatechol dioxygenase gene fragments from alpha- and beta-Proteobacteria. Can J Microbiol 44: 482-486.
    Li HL, Chen JJ, Wu W & Piao XS (2010) Distribution of polycyclic aromatic hydrocarbons in different size fractions of soil from a coke oven plant and its relationship to organic carbon content. J Hazard Mater 176: 729-734.
    Liang RH & Mcfarland MJ (1994) Biodegradation of Pentachlorophenol in Soil Amended with the White-Rot Fungus Phanerochaete-Chrysosporium. Hazard Waste Hazard 11: 411-421.
    Liu F & Fennell DE (2008) Dechlorination and detoxification of 1,2,3,4,7,8-hexachlorodibenzofuran by a mixed culture containing Dehalococcoides ethenogenes strain 195. Environ Sci Technol 42: 602-607.
    Maphosa F, van Passel MWJ, de Vos WM & Smidt H (2012) Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp E1 growing in co-culture with Sedimentibacter sp. Env Microbiol Rep 4: 604-616.
    Martin MF (2012) Vietnamese Victims of Agent Orange and U.S.-Vietnam Relations. Congressional Research Service.
    Masunaga S, Takasuga T & Nakanishi J (2001) Dioxin and dioxin-like PCB impurities in some Japanese agrochemical formulations. Chemosphere 44: 873-885.
    McKay G (2002) Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chem Eng J 86: 343-368.
    Moses M. aPGP (1985) Cutaneous histologic findings in chemical workers with and without chloracne with past exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of the American Academy of Dermatology 12: 497–506.
    Mutalik SR, Vaidya BK, Joshi RM, Desai KM & Nene SN (2008) Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour Technol 99: 7875-7880.
    Nam IH, Kim YM, Schmidt S & Chang YS (2006) Biotransformation of 1,2,3-Tri- and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin by Sphingomonas wittichii strain RW1. Appl Environ Microbiol 72: 112-116.
    Narihiro T, Kaiya S, Futamata H & Hiraishi A (2010) Removal of polychlorinated dioxins by semi-aerobic fed-batch composting with biostimulation of "Dehalococcoides". J Biosci Bioeng 109: 249-256.
    Navarro AF, Cegarra J, Roig A & Garcia D (1993) Relationships between Organic-Matter and Carbon Contents of Organic Wastes. Bioresour Technol 44: 203-207.
    Nguyen Van Minh, Dang Thi Cam Ha, Le Van Hong, Huu NB & Minh NN Detoxification of Dioxin in Soil by Active Lanfill Bioreactor.
    Nojiri H & Omori T (2002) Molecular bases of aerobic bacterial degradation of dioxins: involvement of angular dioxygenation. Biosci Biotechnol Biochem 66: 2001-2016.
    Peng P, Yang H, Jia R & Li L (2013) Biodegradation of dioxin by a newly isolated Rhodococcus sp. with the involvement of self-transmissible plasmids. Appl Microbiol Biotechnol 97: 5585-5595.
    Persson Y, Andersson R, O¨ berg L & Tysklind M (2003) PCDD/F contaminated soils in northern Sweden as an outcome of wood preservation with chlorophenols. Organohalogen Compounds 62: 448–451.
    Persson Y, Lundstedt S, Oberg L & Tysklind M (2007) Levels of chlorinated compounds (CPs, PCPPs, PCDEs, PCDFs and PCDDs) in soils at contaminated sawmill sites in Sweden. Chemosphere 66: 234-242.
    Reinhart DR, McCreanor PT & Townsend T (2002) The bioreactor landfill: Its status and future. Waste Manage Res 20: 172-186.
    RL Kelley, V Srivastava & Barkley P (1993) An Integrated Chemical and Biological Treatment (CBT) System for Site Remediation. 19th Annual Rrel Hazardous Waste Research Symposium Abtract Proceeding 202-205.
    Rosenberg E, Legmann R, Kushmaro A, Taube R & Ron EZ (1993) Petroleum Bioremediation - a Multiphase Problem. J Cell Biochem 187-187.
    Ryckeboer J, Mergaert J, Coosemans J, Deprins K & Swings J (2003) Microbiological aspects of biowaste during composting in a monitored compost bin. J Appl Microbiol 94: 127-137.
    S Tachibana, Y Kiyota & Koga M (2006) Bioremediation of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in soil by fungi screened from nature. Pak J Biol Sci 9: 217-222.
    S. Mohan, Takuro Kisa, Takeru Ohkuma, Robert A. Kanaly & Shimizu Y (2006) Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol 5: 347–374.
    Safe S (1984) Polychlorinated-Biphenyls (Pcbs) and Polybrominated Biphenyls (Pbbs) - Biochemistry, Toxicology, and Mechanism of Action. Crc Critical Reviews in Toxicology 13: 319-395.
    Sather PJ, Ikonomou MG & Haya K (2006) Occurrence of persistent organic pollutants in sediments collected near fish farm sites. Aquaculture 254: 234-247.
    Silbergeld EK & Mattison DR (1987) Experimental and clinical studies on the reproductive toxicology of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Am J Ind Med 11: 131-144.
    Steen WC, Paris DF & Baughman GL (1978) Partitioning of Selected Polychlorinated Biphenyls to Natural Sediments. Water Res 12: 655-657.
    Tachibana S, Kiyota Y & Koga M (2007) Bioremediation of dioxin-contaminated soil by fungi screened from Nature. Pak J Biol Sci 10: 486-491.
    Takada S, Nakamura M, Matsueda T, Kondo R & Sakai K (1996) Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl Environ Microbiol 62: 4323-4328.
    Tancsics A, Szabo I, Baka E, Szoboszlay S, Kukolya J, Kriszt B & Marialigeti K (2010) Investigation of catechol 2,3-dioxygenase and 16S rRNA gene diversity in hypoxic, petroleum hydrocarbon contaminated groundwater. Syst Appl Microbiol 33: 398-406.
    Tancsics A, Szoboszlay S, Szabo I, et al. (2012) Quantification of subfamily I.2.C catechol 2,3-dioxygenase mRNA transcripts in groundwater samples of an oxygen-limited BTEX-contaminated site. Environ Sci Technol 46: 232-240.
    Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100-180.
    Thompson IP, van der Gast CJ, Ciric L & Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7: 909-915.
    U.S.Congress (1991) Dioxin Treatment Technologies Background Paper.
    USEPA (2003) Backgrounds of dioxin.
    van Doesburg W, Middeldorp PJ, Balk M, Schraa G & Stams AJ (2005) Reductive dechlorination of beta-hexachlorocyclohexane (beta-HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp. FEMS Microbiol Ecol 54: 87-95.
    van Leeuwen FXR, Feeley M, Schrenk D, Larsen JC, Farland W & Younes M (2000) Dioxins: WHO's tolerable daily intake (TDI) revisited. Chemosphere 40: 1095-1101.
    Vanness GF, Tiernan TO, Hanes MS, Reynolds CJ, Garrett JH, Wagel DJ & Solch JG (1990) Determination of Dibenzo-Para-Dioxin (Dbd) and Dibenzofuran (Dbf) in Paper Pulp-Mill Defoamer Additives and in Paper Pulp Samples. Chemosphere 20: 1611-1618.
    Vazquez S, Nogales B, Ruberto L, et al. (2013) Characterization of bacterial consortia from diesel-contaminated Antarctic soils: Towards the design of tailored formulas for bioaugmentation. Int Biodeter Biodegr 77: 22-30.
    Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7: 311-316.
    Wan-Ying Shiu & Ma K-C (2000) Temperature Dependence of Physical–Chemical Properties of Selected Chemicals of Environmental Interest. II. Chlorobenzenes, Polychlorinated Biphenyls, Polychlorinated Dibenzo-p-dioxins, and Dibenzofurans. J. Phys. Chem. Ref. Data Vol. 29: 387-442.
    Wittich RM, Wilkes H, Sinnwell V, Francke W & Fortnagel P (1992) Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol 58: 1005-1010.
    Yoshida N, Takahashi N & Hiraishi A (2005) Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. Appl Environ Microbiol 71: 4325-4334.
    Zhu HB, Singleton DR & Aitken MD (2010) Effects of Nonionic Surfactant Addition on Populations of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria in a Bioreactor Treating Contaminated Soil. Environ Sci Technol 44: 7266-7271.
    李俊璋 (2003) 台南市中石化安順廠附近居民流行病學及健康護照研究. 行政院衛生署國民健康局研究計畫.
    林洋宇 (2012) 八氯二聯苯呋喃好氧分解菌株之分離及其生理特性研究. 國立成功大學環境工程研究碩士論文.
    林霧霆 (2004) PCDD/Fs 污染水域水生物及鳥類之生物濃縮及生物放大研究. 國立成功大學環境醫學研究所碩士論文.
    張祖恩 (2010) 安順場址在地植物/微生物調查之研究.

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE