| 研究生: |
蘇漢安 Alif, Satrio Muhammad |
|---|---|
| 論文名稱: |
利用 GNSS 觀測與震後變形修正的蘇門答臘地震潛力 Earthquake Potential of Sumatra Utilizing GNSS Observations and Postseismic Deformation Corrections |
| 指導教授: |
景國恩
Ching, Kuo-En |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 196 |
| 中文關鍵詞: | 地殼變形 、歐拉極點 、地震潛力 、GNSS 速度 、運動塊模型 、流變模型 、滑差率 、蘇門答臘 |
| 外文關鍵詞: | Crustal deformation, Euler pole, Earthquake potential, GNSS velocities, Kinematic block model, Rheology model, Slip deficit rate, Sumatra |
| 相關次數: | 點閱:33 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自2004年以來蘇門答臘地區發生重大地震造成的震後變形阻礙了該地區震間變形和地震潛力的研究。先前對震後變形的研究有一個重大限制,這是導致使用蘇門答臘大地測量觀測對地震潛力進行全面評估不足的一個因素。可以透過大地測量法估算地震斷層的滑動損失率來評估地震潛力。根據地震和地質數據,蘇門答臘的大部分地震都與兩個主要的震源斷層有關:巽他俯衝帶(SSZ),印度-澳大利亞板塊從巽他海溝開始斜向巽他大陸板塊之下俯衝;以及蘇門答臘斷層帶(SFZ),該斷層可容納由於這種斜向俯衝而產生的海沖地運動。在本研究中,採用全球導航衛星系統 (GNSS) 速度來估計蘇門答臘的地震潛力。由於印尼地理空間資訊局 (BIG) 於 2018 年安裝了新的 GNSS 站點,這些 GNSS 資料得到了極大改善。
最初使用在巽他大陸板塊穩定位置記錄的 GNSS 速度以及東南亞已發表的 GNSS 速度來重新評估巽他大陸板塊的塊體旋轉,以確保蘇門答臘的速度更適合構造分析並準確反映實際位移。本研究中以歐拉極參數量化的巽他大陸板塊塊體旋轉為經度-88.71°±0.38°、緯度45.63°±0.45°、角速度0.337°/Myr±0.01°/Myr。蘇門答臘的 GNSS 速度以及 2004 年之前發布的 GNSS 速度(均指巽他大陸板塊)有助於從 GNSS 資料中分離地震後訊號。使用 VISCO1D 軟體產生了基於黏彈性鬆弛的流變模型,該模型代表了建模的震後訊號,並被認為是地震發生 13 年後震後變形的唯一機制。軟體採用一維、球形分層地球模型。本研究發展的流變模型具有三層麥克斯韋地球結構,位於 65 公里至 220 公里深度之間的淺黏彈性層的黏度為 1×10¹⁸ Pa·s。這種源自多次地震的新型流變框架用於正向計算黏彈性速度以調整 GNSS 速度。
使用 DEFNODE 軟體進行運動塊建模,分析了「校正的」 GNSS 速度(即震間速度),以確定滑動缺陷率。軟體基於彈性半空間模型,對由球面地球角速度定義的彈性塊旋轉和沿塊邊界斷層指定節點的耦合進行建模。選定的建模案例具有三塊體排列(INAU:印度-澳大利亞板塊,SUND:巽他大陸板塊,SLIV:銀色板塊,位於巽他海溝和蘇門答臘斷裂帶之間),並包括蘇門答臘斷裂帶最北段的蠕變。因為其赤池資訊準則 (AIC) 值最低。在赤道附近的俯衝界面處觀測到較低的耦合係數(<0.5),位於高耦合係數(>0.8)區域之間。本研究中將其稱為第 II 段的低耦合區域可以起到屏障的作用,這一假設得到了該段歷史上沒有發生過地震的支持。雖然沒有確鑿的證據,但這個建議的屏障可能是由俯衝調查者斷裂帶 (IFZ) 向陸地延伸而形成的。同時,引入的 I 段和 III 段高耦合區可以作為獨特的凸起物,分別能引發 Mw 8.6-8.7 級和 Mw 8.8-8.9 級地震。如果這三個部分同時破裂,可能會引發 9.0-9.1 級地震。
這項研究強調了將震後變形校正與詳細的流變模型相結合以評估蘇門答臘地震潛力的重要性。此地震潛力估計的可靠性可以顯著加強該地區的地震危險評估。然而,擴大 GNSS 站點網絡將進一步改善本研究的結果,提供更好的粗糙度分佈空間分辨率,產生更詳細的流變模型,識別蘇門答臘其他地震斷層的行為,並確認障礙物的存在。與地震學和地質學的合作以及進行水深測量也可以驗證和增強這項研究的結果。
Postseismic deformation resulting from significant earthquakes in Sumatra since 2004 hindered the study of interseismic deformation and earthquake potential in the region. A major limitation in previous studies of postseismic deformation was a contributing factor to the insufficient comprehensive assessments of earthquake potential using geodetic observations in Sumatra. The earthquake potential could be evaluated through a geodetic approach that estimates the slip deficit rate on seismogenic faults. Based on seismic and geological data, the majority of earthquakes in Sumatra were associated with two main seismogenic faults: the Sunda Subduction Zone (SSZ), where the Indo-Australian plate subducts obliquely beneath the Sundaland plate starting at the Sunda Trench, and the Sumatran Fault Zone (SFZ), which accommodates trench-parallel motion due to this oblique subduction. In this study, Global Navigation Satellite Systems (GNSS) velocities were employed to estimate earthquake potential of Sumatra. These GNSS data have much more improved due to the installation of new GNSS sites by the Geospatial Information Agency of Indonesia (BIG) in 2018. The data were processed using Bernese 5.2 software with a double-difference positioning method and were constrained by the velocities of eight International GNSS Stations (IGS) to derive daily coordinate solutions under ITRF2014.
The GNSS velocities recorded at stable locations on the Sundaland plate, along with published GNSS velocities from Southeast Asia, were initially used to re-evaluate the block rotation of the Sundaland plate to ensure that the velocities in Sumatra are better suited for tectonic analysis and accurately reflect actual displacements. The block rotation of the Sundaland plate, quantified through parameters of Euler pole in this study, are a longitude of -88.71° ± 0.38°, a latitude of 45.63° ± 0.45°, and an angular velocity of 0.337°/Myr ± 0.01°/Myr. The GNSS velocities in Sumatra, along with previously published GNSS velocities from before 2004, both referring to the Sundaland plate, facilitated the isolation of postseismic signals from the GNSS data. A rheological model based on viscoelastic relaxation, which represents the modeled postseismic signal and is assumed to be the sole mechanism of postseismic deformation 13 years after the earthquake, was generated using VISCO1D software. This software employed a one-dimensional, spherically stratified Earth model. The rheological model developed in this study features a three-layered Maxwell Earth structure, with a viscosity of 1 × 10¹⁸ Pa·s for the shallow viscoelastic layer located between 65 km and 220 km deep. This new rheological framework, derived from multiple earthquakes, was used to forward-calculate viscoelastic velocities to adjust the GNSS velocities.
The "corrected" GNSS velocities, which were interseismic velocities, were analyzed to determine the slip deficit rate through kinematic block modeling using DEFNODE software. This software modeled elastic block rotations defined by spherical Earth angular velocities and the coupling at specified nodes along block-bounding faults based on an elastic half-space model. The selected modeling case featured a three-block arrangement (INAU: Indo-Australian plate, SUND: Sundaland plate, SLIV: Sliver plate, which was located between the Sunda Trench and the Sumatran Fault Zone) and included creeping at the northernmost segment of the Sumatran Fault Zone. due to its lowest Akaike Information Criterion (AIC) values. A low coupling coefficient (<0.5) was observed along the subduction interface near the equator, positioned between regions with high coupling coefficients (>0.8). This low-coupling area, introduced to as segment II in this study, could function as a barrier, a hypothesis supported by the absence of historical earthquakes in this segment. Although there was no concrete evidence, this proposed barrier could be generated by the landward extension of the subducting Investigator Fracture Zone (IFZ). Meanwhile, the high-coupling zones, introduced as segments I and III, can serve as distinct asperities capable of generating earthquakes with magnitudes of Mw 8.6-8.7 and Mw 8.8-8.9, respectively. If those three segments were to rupture simultaneously, it could potentially lead to an earthquake of Mw 9.0-9.1.
This study highlights the importance of integrating postseismic deformation corrections with detailed rheological models to assess the earthquake potential of Sumatra. The reliability of this estimated earthquake potential can significantly enhance seismic hazard assessments in the region. However, expanding the network of GNSS sites will further improve the result of this study, by providing a better spatial resolution of asperity distribution, generating more detailed rheological models, identifying the behavior of other seismogenic faults in Sumatra, and confirming the existence of barriers. The collaboration with the seismology and geology, along with conducting bathymetric surveys, can also validate and enhance the findings of this study.
Akaike, H. Akaike’s information criterion. International encyclopedia of statistical science, 25-25. 2011. https://doi.org/10.1007/978-3-642-04898-2_110
Alif, S. M., Meilano, I., Gunawan, E., & Efendi, J. Evidence of postseismic deformation signal of the 2007 M8.4 Bengkulu earthquake and the 2012 M8.6 Indian Ocean earthquake in Southern Sumatra, Indonesia, based on GPS data. Journal of Applied Geodesy, 10(2), 103-108. 2016. https://doi.org/10.1515/jag-2015-0019
Alif, S. M., Fattah, E. I., & Kholil, M. Geodetic slip rate and locking depth of east Semangko Fault derived from GPS measurement. Geodesy and Geodynamics, 11(3), 222-228. 2020. https://doi.org/10.1016/j.geog.2020.04.002
Alif, S. M., Ching, K. E., Siagian, J. M., & Anggara, O. Present-day Crustal Deformation in West Sumatra After Series of Sumatran Great Earthquake from 2004-2010. Journal of Earth and Marine Technology (JEMT), 3(2), 59-68. 2023. https://doi.org/ 10.31284/j.jemt.2023.v3i2.3733
Alif, S. M., Ching, K. E., Sagiya, T., & Wahyuni, W. N. Determination of Euler pole parameters for Sundaland plate based on updated GNSS observations in Sumatra, Indonesia. Geoscience Letters, 11(1), 1-16. 2024. https://doi.org/10.1186/s40562-024-00330-0
Alif, S. M., Erlando, M. R., Anggara, O., & Nurhayati, M. Impact of baseline length on uncertainty in static relative GNSS positioning. Journal of Applied Geodesy, (0). 2025a. https://doi.org/10.1515/jag-2024-0090.
Alif, S. M., Ching, K. E., Sagiya, T., Meilano, I., Rau, R. J. Integrating Postseismic Deformation Corrections for Accurate Seismic Hazard Estimation of the Coupled Megathrust System in Sumatra. Journal of Geophysical Research: Solid Earth, under review. 2025b.
Allen, C. R., Gillespie, A. R., Yuan, H., Sieh, K. E., Buchun, Z., & Chengnan, Z. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard. Geological Society of America Bulletin, 95(6), 686-700. 1984. https://doi.org/10.1130/0016-7606(1984)95<686:RRAAFY>2.0.CO;2
Altamimi, Z., Sillard, P., & Boucher, C. ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. Journal of Geophysical Research: Solid Earth, 107(B10), ETG-2. 2002. https://doi.org/ 10.1029/2001JB000561
Altamimi, Z., Sillard, P., & Boucher, C. The impact of a no‐net‐rotation condition on ITRF2000. Geophysical Research Letters, 30(2), 36-1. 2003. doi:10.1029/ 2002GL016279
Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B., & Boucher, C. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. Journal of Geophysical Research: Solid Earth, 112(B9). 2007. https://doi.org/10.1029/2007JB004949
Altamimi, Z., Collilieux, X., & Métivier, L. ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy, 85(8), 457-473. 2011. https://doi.org/10.1007/s00190-011-0444-4
Altamimi, Z., Métivier, L., & Collilieux, X. ITRF2008 plate motion model. Journal of geophysical research: solid earth, 117(B7). 2012. https://doi.org/10.1029/ 2011JB008930
Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of geophysical research: solid earth, 121(8), 6109-6131. 2016. https://doi.org/10.1002/2016JB013098
Altamimi, Z., Métivier, L., Rebischung, P., Rouby, H., & Collilieux, X. ITRF2014 plate motion model. Geophysical Journal International, 209(3), 1906-1912. 2017. https://doi.org/10.1093/gji/ggx136
Ambikapathy, A., Catherine, J. K., Gahalaut, V. K., Narsaiah, M., Bansal, A., & Mahesh, P. The 2007 Bengkulu earthquake, its rupture model and implications for seismic hazard. Journal of Earth System Science, 119, 553-560. 2010. https://doi.org/10.1007/ s12040-010-0037-2
Ammon, C. J., Ji, C., Thio, H. K., Robinson, D., Ni, S., Hjorleifsdottir, V., & Wald, D. Rupture process of the 2004 Sumatra-Andaman earthquake. Science, 308(5725), 1133-1139. 2005. DOI: 10.1126/science.1112260
Argus, D. F., Gordon, R. G., & DeMets, C. Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame. Geochemistry, Geophysics, Geosystems, 12(11). 2011. https://doi.org/10.1029/2011GC003751
Barber, A. J., & Crow, M. J. Structure of Sumatra and its implications for the tectonic assembly of Southeast Asia and the destruction of Paleotethys. Island Arc, 18(1), 3-20. 2009. https://doi.org/10.1111/j.1440-1738.2008.00631.x
Bellier, O., & Sébrier, M. Relationship between tectonism and volcanism along the Great Sumatran fault zone deduced by SPOT image analyses. Tectonophysics, 233(3-4), 215-231. 1994. https://doi.org/10.1016/0040-1951(94)90242-9
Berglar, K., Gaedicke, C., Ladage, S., & Thoele, H. The Mentawai forearc sliver off Sumatra: A model for a strike-slip duplex at a regional scale. Tectonophysics, 710, 225-231. 2017. https://doi.org/10.1016/j.tecto.2016.09.014
Bird, P. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). 2003. https://doi.org/10.1029/2001GC000252
Blewitt, G., & Lavallée, D. Effect of annual signals on geodetic velocity. Journal of Geophysical Research: Solid Earth, 107(B7), ETG-9. 2002. https://doi.org/10.1029/ 2001JB000570
Bock, Y., Prawirodirdjo, L., Genrich, J. F., Stevens, C. W., McCaffrey, R., Subarya, C., & Calais, E. Crustal motion in Indonesia from global positioning system measurements. Journal of Geophysical Research: Solid Earth, 108(B8). 2003. https://doi.org/10.1029/2001JB000324
Boehm, J., Niell, A., Tregoning, P., & Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical research letters, 33(7). 2006. https://doi.org/10.1029/2005GL025546
BPS, Badan Pusat Statistik. 2020. Pertumbuhan Ekonomi Lampung Triwulan I-2020. Berita Resmi Statistik.
Bradley, K. E., Feng, L., Hill, E. M., Natawidjaja, D. H., & Sieh, K. Implications of the diffuse deformation of the Indian Ocean lithosphere for slip partitioning of oblique plate convergence in Sumatra. Journal of Geophysical Research: Solid Earth, 122(1), 572-591. 2017. https://doi.org/10.1002/2016JB013549
Bramanto, B., Gumilar, I., Taufik, M., & Hermawan, I. M. D. Long-range single baseline RTK GNSS positioning for land cadastral survey mapping. In E3S Web of Conferences (Vol. 94, p. 01022). EDP Sciences. 2019. https://doi.org/ 10.1051/e3sconf/ 20199401022
Carrere, L., Lyard, F., Cancet, M., Guillot, A., & Roblou, L. FES2012: A new global tidal model taking advantage of nearly twenty years of altimetry. In Proceedings of the 20 Years of Progress in Radar Altimetry Symposium (Venice, Italy) (pp. 1-20). 2012.
Ching, K. E., Johnson, K. M., Rau, R. J., Chuang, R. Y., Kuo, L. C., & Leu, P. L. Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model. Earth and Planetary Science Letters, 301(1-2), 78-86. 2011. https://doi.org/10.1016/j.epsl.2010.10.021
Chlieh, M., Avouac, J. P., Sieh, K., Natawidjaja,ia D. H., & Galetzka, J. Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. Journal of Geophysical Research: Solid Earth, 113(B5). 2008. https://doi.org/10.1029/2007JB004981
Crow, M. J., & Barber, A. J. Map: Simplified geological map of Sumatra. Geological Society, London, Memoirs, 31(1), NP-NP. 2005.
Dach, R., & Walser, P. Bernese GNSS Software Version 5.2. 2015.
DeMets, C., Gordon, R. G., & Argus, D. F. Geologically current plate motions. Geophysical journal international, 181(1), 1-80. 2010. https://doi.org/10.1111/j.1365-246X.2009.04491.x
Di Giacomo, D., & Storchak, D. A. Digitization of BCIS bulletins and the ISC quest to verify pre-digital earthquakes. Comptes Rendus. Géoscience, 355(G1), 23-34. 2023. DOI: 10.5802/crgeos.185
Diament, M., Harjono, H., Karta, K., Deplus, C., Dahrin, D., Zen Jr, M. T., & Malod, J. Mentawai fault zone off Sumatra: A new key to the geodynamics of western Indonesia. Geology, 20(3), 259-262. 1992.
Duquesnoy, T., Bellier, O., Kasser, M., Sebrier, M., Vigny, C., & Bahar, I. Deformation related to the 1994 Liwa earthquake derived from geodetic measurements. Geophysical research letters, 23(21), 3055-3058. 1996. https://doi.org/10.1130/0091-7613(1992)020<0259: MFZOSA>2.3.CO;2
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., & Alsdorf, D. The shuttle radar topography mission. Reviews of geophysics, 45(2). 2007.
Feng, L., Hill, E. M., Banerjee, P., Hermawan, I., Tsang, L. L., Natawidjaja, D. H., & Sieh, K. A unified GPS‐based earthquake catalog for the Sumatran plate boundary between 2002 and 2013. Journal of Geophysical Research: Solid Earth, 120(5), 3566-3598. 2015. https://doi.org/10.1002/2014JB011661
Fitch, T. J. Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific. Journal of Geophysical research, 77(23), 4432-4460. 1972. https://doi.org/10.1029/JB077i023p04432
Fujii, Y., & Satake, K. Tsunami source of the 2004 Sumatra–Andaman earthquake inferred from tide gauge and satellite data. Bulletin of the Seismological Society of America, 97(1A), S192-S207. 2007. https://doi.org/10.1785/0120050613
Fujii, Y., Satake, K., Watada, S., & Ho, T. C. Slip distribution of the 2005 Nias earthquake (M w 8.6) inferred from geodetic and far-field tsunami data. Geophysical Journal International, 223(2), 1162-1171. 2020. https://doi.org/10.1093/gji/ggaa384
Funnell, M. J., Robinson, A. H., Hobbs, R. W., & Peirce, C. Evolution and properties of young oceanic crust: constraints from Poisson's ratio. Geophysical Journal International, 225(3), 1874-1896. 2021. https://doi.org/10.1093/gji/ggab062
Gahalaut, V. K., Nagarajan, B., Catherine, J. K., & Kumar, S. Constraints on 2004 Sumatra–Andaman earthquake rupture from GPS measurements in Andaman–Nicobar Islands. Earth and Planetary Science Letters, 242(3-4), 365-374. 2006. https://doi.org/10.1016/j.epsl.2005.11.051
Gouretski, V. Using GEBCO digital bathymetry to infer depth biases in the XBT data. Deep Sea Research Part I: Oceanographic Research Papers, 62, 40-52. 2012.
Grunthal, G. European macroseismic scale 1998. European Seismological Commission (ESC). 1998.
Gunawan, E., Sagiya, T., Ito, T., Kimata, F., Tabei, T., Ohta, Y., & Sugiyanto, D. A comprehensive model of postseismic deformation of the 2004 Sumatra–Andaman earthquake deduced from GPS observations in northern Sumatra. Journal of Asian Earth Sciences, 88, 218-229. 2014. https://doi.org/10.1016/j.jseaes.2014.03.016
Gusman, A. R., Tanioka, Y., Kobayashi, T., Latief, H., & Pandoe, W. Slip distribution of the 2007 Bengkulu earthquake inferred from tsunami waveforms and InSAR data. Journal of Geophysical Research: Solid Earth, 115(B12). 2010. https://doi.org/10.1029/ 2010JB007565
Gutenberg, B., & Richter, C. F. Earthquake magnitude, intensity, energy, and acceleration. Bulletin of the Seismological society of America, 32(3), 163-191. 1942. https://doi.org/10.1785/BSSA0320030163
Gutscher, M. A. Great subduction zone earthquakes: Advances in our understanding a decade after Sumatra, 2004. Plate Boundaries and Natural Hazards, 99-122. 2016. DOI: 10.1002/9781119054146.ch5.
Hall, P., & Martin, M. A. On bootstrap resampling and iteration. Biometrika, 75(4), 661-671. 1988.
Hamilton, W. B. Tectonics of the Indonesian region (Vol. 1078). US Government Printing Office. 1979.
Han, S. C., Sauber, J., Luthcke, S. B., Ji, C., & Pollitz, F. F. Implications of postseismic gravity change following the great 2004 Sumatra‐Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data. Journal of Geophysical Research: Solid Earth, 113(B11). 2008. https://doi.org/10.1029/ 2008JB005705
Hanifa, N. R., Sagiya, T., Kimata, F., Efendi, J., Abidin, H. Z., & Meilano, I. Interplate coupling model off the southwestern coast of Java, Indonesia, based on continuous GPS data in 2008–2010. Earth and Planetary Science Letters, 401, 159-171. 2014. https://doi.org/10.1016/j.epsl.2014.06.010
Harris, R. A. Large earthquakes and creeping faults. Reviews of Geophysics, 55(1), 169-198. 2017. https://doi.org/10.1002/2016RG000539
Hayes, G. P. Result of the Oct 25, 2010 Mw 7.7 Southern Sumatra Earthquake. 2010.
Hayes, G. P., Wald, D. J., & Johnson, R. L. Slab1. 0: A three‐dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth, 117(B1). 2012. https://doi.org/10.1029/2011JB008524
Hayes, G. P. The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth and Planetary Science Letters, 468, 94-100. 2017. https://doi.org/10.1016/ j.epsl.2017.04.003
Hetland, E. A., Hager, B. H., & O'Connell, R. J. Transient Postseismic Relaxation With Burger's Body Viscoelasticity. In AGU Fall Meeting Abstracts (Vol. 2002, pp. G12C-04). 2002.
Hoechner, A., Sobolev, S. V., Einarsson, I., & Wang, R. Investigation on afterslip and steady state and transient rheology based on postseismic deformation and geoid change caused by the Sumatra 2004 earthquake. Geochemistry, Geophysics, Geosystems, 12(7). 2011. https://doi.org/10.1029/2010GC003450
Horowitz, J. L. Bootstrap methods in econometrics. Annual Review of Economics, 11(1), 193-224. 2019.
Hu, Y., & Wang, K. Spherical‐Earth finite element model of short‐term postseismic deformation following the 2004 Sumatra earthquake. Journal of Geophysical Research: Solid Earth, 117(B5). 2012. https://doi.org/10.1029/2012JB009153
Hurukawa, N., Wulandari, B. R., & Kasahara, M. Earthquake history of the Sumatran fault, Indonesia, since 1892, derived from relocation of large earthquakes. Bulletin of the Seismological Society of America, 104(4), 1750-1762. 2014. https://doi.org/10.1785/ 0120130201
Ito, T., Yoshioka, S., & Miyazaki, S. I. Interplate coupling in northeast Japan deduced from inversion analysis of GPS data. Earth and Planetary Science Letters, 176(1), 117-130. 2000. https://doi.org/10.1016/S0012-821X(99)00316-7
Ito, T., Gunawan, E., Kimata, F., Tabei, T., Simons, M., Meilano, I., & Sugiyanto, D. Isolating along‐strike variations in the depth extent of shallow creep and fault locking on the northern Great Sumatran Fault. Journal of Geophysical Research: Solid Earth, 117(B6). 2012. https://doi.org/10.1029/2011JB008940
Ji, C. Magnitude 9.0 earthquake off the west coast of northern Sumatra: Preliminary rupture model, report. US Geol. Surv., Denver, Colo., available at: http://neic. usgs. gov/neis/eq depot/2004/eq, 41226. 2005a.
Ji, C. Preliminary Result 05/03/28 (Mw 8.7), Sumatra Earthquake. 2005b.
Ji, C. Rupture Process of the Sep 12, 2007 Mw 8.4 Sumatra Earthquake: Phase II. 2007.
Johnston, G., Riddell, A., & Hausler, G. The international GNSS service. Springer handbook of global navigation satellite systems, 967-982. 2017.
Kanamori, H. The energy release in great earthquakes. Journal of geophysical research, 82(20), 2981-2987. 1977. https://doi.org/10.1029/JB082i020p02981
Kasmolan, M., Santosa, B. J., Lees, J. M., & Utama, W. Earthquake source parameters at the sumatran fault zone: Identification of the activated fault plane. Central European Journal of Geosciences, 2, 455-474. 2010. https://doi.org/10.2478/v10085-010-0016-5
Kelly, P. Solid mechanics part I: An introduction to solid mechanics. A creative commons attributions, Mountain view, cA, 94042. 2013.
King, R. C., Backé, G., Morley, C. K., Hillis, R. R., & Tingay, M. R. Balancing deformation in NW Borneo: quantifying plate-scale vs. gravitational tectonics in a delta and deepwater fold-thrust belt system. Marine and Petroleum Geology, 2010. https://doi.org/10.1016/j.marpetgeo.2009.07.008
Konca, A. O., Avouac, J. P., Sladen, A., Meltzner, A. J., Sieh, K., Fang, P., & Helmberger, D. V. Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature, 456(7222), 631-635. 2008. https://doi.org/10.1038/ nature07572
Kreemer, C., Blewitt, G., & Maerten, F. Co‐and postseismic deformation of the 28 March 2005 Nias Mw 8.7 earthquake from continuous GPS data. Geophysical Research Letters, 33(7). 2006. https://doi.org/10.1029/2005GL025566
Kuncoro, H., Meilano, I., & Susilo, S. Sunda and Sumatra Block Motion in ITRF2008. In E3S Web of Conferences (Vol. 94, p. 04006). EDP Sciences. 2019.
Lange, D., Tilmann, F., Rietbrock, A., Collings, R., Natawidjaja, D. H., Suwargadi, B. W., & Ryberg, T. The fine structure of the subducted investigator fracture zone in western Sumatra as seen by local seismicity. Earth and Planetary Science Letters, 298(1-2), 47-56. 2010. https://doi.org/10.1016/j.epsl.2010.07.020
Lentas, K., Di Giacomo, D., Harris, J., & Storchak, D. A. The ISC Bulletin as a comprehensive source of earthquake source mechanisms. Earth System Science Data, 11(2), 565-578. 2019. https://doi.org/10.5194/essd-11-565-2019
Li, L., & Huang, Z. Slip distribution of the 2010 Mentawai earthquake from inversion of tsunami waveforms and tsunami field survey data. In Cocos (Vol. 12, pp. 96-8919). 2013.
Li, L., Cheung, K. F., Yue, H., Lay, T., & Bai, Y. Effects of dispersion in tsunami Green's functions and implications for joint inversion with seismic and geodetic data: A case study of the 2010 Mentawai Mw 7.8 earthquake. Geophysical Research Letters, 43(21), 11-182. 2016. https://doi.org/10.1002/2016GL070970
Li, C. K., Ching, K. E., & Chen, K. H. The ongoing modernization of the Taiwan semi-dynamic datum based on the surface horizontal deformation model using GNSS data from 2000 to 2016. Journal of geodesy, 93, 1543-1558. 2019. https://doi.org/10.1007/s00190-019-01267-5
Liu, S., Suardi, I., Xu, X., Yang, S., & Tong, P. The geometry of the subducted slab beneath Sumatra revealed by regional and teleseismic traveltime tomography. Journal of Geophysical Research: Solid Earth, 126(1), e2020JB020169. 2021. https://doi.org/ 10.1029/2020JB020169
Lubis, A. M., Hashima, A., & Sato, T. Analysis of afterslip distribution following the 2007 September 12 southern Sumatra earthquake using poroelastic and viscoelastic media. Geophysical Journal International, 192(1), 18-37. 2013. https://doi.org/10.1093/ gji/ggs020
Mai, P. M., & Thingbaijam, K. K. S. SRCMOD: An online database of finite‐fault rupture models. Seismological Research Letters, 85(6), 1348-1357. 2014. https://doi.org/10.1785/0220140077
Martin, S. S., Cummins, P. R., & Meltzner, A. J. Gempa Nusantara: A database of 7380 macroseismic observations for 1200 historical earthquakes in Indonesia from 1546 to 1950. Bulletin of the Seismological Society of America, 112(6), 2958-2980. 2022. https://doi.org/10.1785/0120220047
McCaffrey, R., Stein, S., & Freymueller, J. Crustal block rotations and plate coupling. Plate Boundary Zones, Geodyn. Ser, 30, 101-122. 2002. https://doi.org/10.1029/ GD030p0101
McCaffrey, R. DEFNODE User's Manual Version 2007. 10. 25. 2007.
McCaffrey, R. The tectonic framework of the Sumatran subduction zone. Annual Review of Earth and Planetary Sciences, 37(1), 345-366. 2009. https://doi.org/10.1146/ annurev.earth.031208.100212
McLoughlin, I. V., Wong, K. J., & Tan, S. L. Data collection, communications and processing in the Sumatran GPS array (SuGAr). In Proceedings of the World Congress on Engineering (Vol. 2, pp. 6-8). 2011.
Mendoza, L. P. O., Richter, A., Marderwald, E. R., Hormaechea, J. L., Connon, G., Scheinert, M., & Perdomo, R. A. Horizontal and vertical deformation rates linked to the Magallanes‐Fagnano Fault, Tierra del Fuego: Reconciling geological and geodetic observations by modeling the current seismic cycle. Tectonics, 41(1), e2021TC006801. 2022. https://doi.org/10.1029/2021TC006801
Milsom, J., Holt, R., Ayub, D. B., & Smail, R. Gravity anomalies and deep structural controls at the Sabah-Palawan margin, South China Sea. Geological Society, London, Special Publications, 126(1), 417-427. 1997. https://doi.org/10.1144/GSL.SP.1997.126.01.25
Morgan, P. M., Feng, L., Meltzner, A. J., Lindsey, E. O., Tsang, L. L., & Hill, E. M. Sibling earthquakes generated within a persistent rupture barrier on the Sunda megathrust under Simeulue Island. Geophysical Research Letters, 44(5), 2159-2166. 2017. https://doi.org/10.1002/2016GL071901
Mukti, M. M. R., Singh, S. C., Deighton, I., Hananto, N. D., Moeremans, R., & Permana, H. Structural evolution of backthrusting in the Mentawai Fault Zone, offshore Sumatran forearc. Geochemistry, Geophysics, Geosystems, 13(12). 2012. https://doi.org/ 10.1029/2012GC004199
Murakami, S., Ichimura, T., Fujita, K., Hori, T., & Ohta, Y. Sensitivity analysis for seafloor geodetic constraints on coseismic slip and interseismic slip-deficit distributions. Frontiers in Earth Science, 9, 614088. 2021. https://doi.org/10.3389/ feart.2021.614088
Murray-Moraleda, J. GPS: applications in crustal deformation monitoring. Extreme Environmental Events. 2011. https://doi.org/10.1007/978-0-387-30440-3_250
Mustafar, M. A., Simons, W. J., Tongkul, F., Satirapod, C., Omar, K. M., & Visser, P. N. Quantifying deformation in North Borneo with GPS. Journal of Geodesy, 91(10), 1241-1259. 2017. https://doi.org/10.1007/s00190-017-1024-z
Myers, D. E. Spatial interpolation: an overview. Geoderma, 62(1-3), 17-28. 1994. https://doi.org/10.1016/0016-7061(94)90025-6
Natawidjaja, D. H., Sieh, K., Ward, S. N., Cheng, H., Edwards, R. L., Galetzka, J., & Suwargadi, B. W. Paleogeodetic records of seismic and aseismic subduction from central Sumatran microatolls, Indonesia. Journal of Geophysical Research: Solid Earth, 109(B4). 2004. https://doi.org/10.1029/2003JB002398
Natawidjaja, D. H., Sieh, K., Chlieh, M., Galetzka, J., Suwargadi, B. W., Cheng, H., & Ward, S. N. Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls. Journal of Geophysical Research: Solid Earth, 111(B6). 2006. https://doi.org/10.1029/2005JB004025
Natawidjaja, D. H., & Triyoso, W. The Sumatran fault zone—From source to hazard. Journal of Earthquake and Tsunami, 1(01), 21-47. 2007. https://doi.org/ 10.1142/ S1793431107000031
Natawidjaja, D. H., Bradley, K., Daryono, M. R., Aribowo, S., & Herrin, J. Late Quaternary eruption of the Ranau Caldera and new geological slip rates of the Sumatran Fault Zone in Southern Sumatra, Indonesia. Geoscience Letters, 4(1), 1-15. 2017. https://doi.org/10.1186/s40562-017-0087-2
Natawidjaja, D. H. Updating active fault maps and sliprates along the Sumatran Fault Zone, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 118, No. 1, p. 012001). IOP Publishing. 2018.
Newcomb, K. R., & McCann, W. R. Seismic history and seismotectonics of the Sunda Arc. Journal of Geophysical Research: Solid Earth, 92(B1), 421-439. 1987. https://doi.org/10.1029/JB092iB01p00421
Nishimura, T. Short-term slow slip events along the Ryukyu Trench, southwestern Japan, observed by continuous GNSS. Progress in Earth and Planetary Science, 1, 1-13. 2014. https://doi.org/10.1186/s40645-014-0022-5
Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 75(4), 1135-1154. 1985. https://doi.org/10.1785/BSSA0750041135
Oleskevich, D. A., Hyndman, R. D., & Wang, K. The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. Journal of Geophysical Research: Solid Earth, 104(B7), 14965-14991. 1999. https://doi.org/10.1029/1999JB900060
Oliver, M. A., & Webster, R. Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information System, 4(3), 313-332. 1990. https://doi.org/10.1080/02693799008941549
Page, B. G. N., Bennett, J. D., Cameron, N. R., Bridge, D. M., Jeffery, D. H., Keats, W., & Thaib, J. A review of the main structural and magmatic features of northern Sumatra. Journal of the Geological Society, 136(5), 569-577. 1979. https://doi.org/ 10.1144/gsjgs.136.5.0569
Panda, D., Kundu, B., Gahalaut, V. K., & Rangin, C. Crustal deformation, spatial distribution of earthquakes and along strike segmentation of the Sagaing Fault, Myanmar. Journal of Asian Earth Sciences, 166, 89-94. 2018. https://doi.org/10.1016/ j.jseaes.2018.07.029
Panda, D., Kundu, B., Gahalaut, V. K., & Rangin, C. India‐sunda plate motion, crustal deformation, and seismic hazard in the Indo‐Burmese arc. Tectonics, 39(8), e2019TC006034. 2020. https://doi.org/10.1029/2019TC006034
Paul, J., Lowry, A. R., Bilham, R., Sen, S., & Smalley Jr, R. Postseismic deformation of the Andaman Islands following the 26 December, 2004 great Sumatra–Andaman earthquake. Geophysical Research Letters, 34(19). 2007. https://doi.org/10.1029/ 2007GL031024
Paul, J., Rajendran, C. P., Lowry, A. R., Andrade, V., & Rajendran, K. Andaman postseismic deformation observations: still slipping after all these years?. Bulletin of the Seismological Society of America, 102(1), 343-351. 2012. DOI: 10.1785/0120110074
Pesicek, J. D., Thurber, C. H., Widiyantoro, S., Engdahl, E. R., & DeShon, H. R. Complex slab subduction beneath northern Sumatra. Geophysical Research Letters, 35(20). 2008. https://doi.org/10.1029/2008GL035262
Petit, G., & Luzum, B. The 2010 reference edition of the IERS conventions. In Reference Frames for Applications in Geosciences (pp. 57-61). Springer Berlin Heidelberg. 2013.
Pollitz, F. F. Postseismic relaxation theory on the spherical earth. Bulletin of the Seismological Society of America, 82(1), 422-453. 1992. https://doi.org/10.1785/ BSSA0820010422
Pollitz, F. F. Gravitational viscoelastic postseismic relaxation on a layered spherical Earth. Journal of Geophysical Research: Solid Earth, 102(B8), 17921-17941. 1997. https://doi.org/10.1029/97JB01277
Pollitz, F. F., Bürgmann, R., & Banerjee, P. Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth. Geophysical Journal International, 167(1), 397-420. 2006. https://doi.org/10.1111/j.1365-246X.2006.03018.x
Potin, P., Rosich, B., Grimont, P., Miranda, N., Shurmer, I., O'Connell, A., & Krassenburg, M. Sentinel-1 mission status. In Proceedings of EUSAR 2016: 11th European conference on synthetic aperture radar (pp. 1-6). VDE. 2016.
Pratama, C., Ito, T., Sasajima, R., Tabei, T., Kimata, F., Gunawan, E., & Meilano, I. Transient rheology of the oceanic asthenosphere following the 2012 Indian Ocean Earthquake inferred from geodetic data. Journal of Asian Earth Sciences, 147, 50-59. 2017. https://doi.org/10.1016/j.jseaes.2017.07.049
Prawirodirdjo, L., Bocl, Y., McCaffrey, R., Genrich, J., Calais, E., Stevens, C., & Fauzi, R. M. Geodetic observations of interseismic strain segmentation at the Sumatra subduction zone. Geophysical research letters, 24(21), 2601-2604. 1997. https://doi.org/10.1029/97GL52691
Prawirodirdjo, L., McCaffrey, R., Chadwell, C. D., Bock, Y., & Subarya, C. Geodetic observations of an earthquake cycle at the Sumatra subduction zone: Role of interseismic strain segmentation. Journal of Geophysical Research: Solid Earth, 115(B3). 2010. https://doi.org/10.1029/2008JB006139
Qi‐Dong, D., Shao‐Ping, C., Ji, M., & Peng, D. Seismic activities and earthquake potential in the Tibetan Plateau. Chinese Journal of Geophysics, 57(5), 678-697. 2014. https://doi.org/10.1002/cjg2.20133
Raharja, R., Ito, T., & Meilano, I. Evaluation of earthquake potential using a kinematic crustal block rotations model in Java, Indonesia, based on GNSS observation. Journal of Asian Earth Sciences: X, 11, 100171. 2024. https://doi.org/10.1016/ j.jaesx.2023.100171
Rahmadani, S., Meilano, I., Susilo, S., Sarsito, D. A., Abidin, H. Z., & Supendi, P. Geodetic observation of strain accumulation in the Banda Arc region. Geomatics, Natural Hazards and Risk, 13(1), 2579-2596. 2022. https://doi.org/10.1080/ 19475705.2022.2126799
Rangin, C., Le Pichon, X., Mazzotti, S., Pubellier, M., Chamot-Rooke, N., Aurelio, M., & Quebral, R. Plate convergence measured by GPS across the Sundaland/Philippine Sea Plate deformed boundary: the Philippines and eastern Indonesia. Geophysical Journal International, 139(2), 296-316. 1999. https://doi.org/10.1046/j.1365-246x. 1999.00969.x
Reid, H. F. Sudden Earth-movements in Sumatra in 1892. Bulletin of the Seismological Society of America, 3(2), 72-79. 1913. https://doi.org/10.1785/BSSA0030020072
Reinen, L. A., Weeks, J. D., & Tullis, T. E. The frictional behavior of serpentinite: Implications for aseismic creep on shallow crustal faults. Geophysical Research Letters, 18(10), 1921-1924. 1991. https://doi.org/10.1029/91GL02367
Rhie, J., Dreger, D., Bürgmann, R., & Romanowicz, B. Slip of the 2004 Sumatra–Andaman earthquake from joint inversion of long-period global seismic waveforms and GPS static offsets. Bulletin of the Seismological Society of America, 97(1A), S115-S127. 2007. https://doi.org/10.1785/0120050620
Richards, S., Lister, G., & Kennett, B. A slab in depth: Three‐dimensional geometry and evolution of the Indo‐Australian plate. Geochemistry, Geophysics, Geosystems, 8(12). 2007. https://doi.org/10.1029/2007GC001657
Sandwell, D. T., & Wessel, P. Interpolation of 2‐D vector data using constraints from elasticity. Geophysical Research Letters, 43(20), 10-703. 2016. https://doi.org/ 10.1002/2016GL070340
Schmalholz, S. M., & Podladchikov, Y. Y. Viscoelastic folding: Maxwell versus Kelvin rheology. Geophysical Research Letters, 28(9), 1835-1838. 2001. https://doi.org/10.1029/2000GL012158
Sharma, Y., Pasari, S., Ching, K. E., Dikshit, O., Kato, T., Malik, J. N., & Yen, J. Y. Spatial distribution of earthquake potential along the Himalayan arc. Tectonophysics, 791, 228556. 2020. https://doi.org/10.1016/j.tecto.2020.228556
Sieh, K., & Natawidjaja, D. Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth, 105(B12), 28295-28326. 2000. https://doi.org/10.1029/ 2000JB900120
Simanjuntak, A. V., Muksin, U., & Sipayung, R. M. Earthquake relocation using HypoDDMethod to investigate active fault system in Southeast Aceh. In Journal of Physics: Conference Series (Vol. 1116, No. 3, p. 032033). IOP Publishing. 2018. DOI 10.1088/1742-6596/1116/3/032033
Simons, W. J. F., Socquet, A., Vigny, C., Ambrosius, B. A. C., Haji Abu, S., Promthong, C., & Spakman, W. A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. Journal of Geophysical Research: Solid Earth, 112(B6). 2007. https://doi.org/10.1029/2005JB003868
Singh, S. C., Hananto, N. D., Chauhan, A. P., Permana, H., Denolle, M., Hendriyana, A., & Natawidjaja, D. Evidence of active backthrusting at the NE Margin of Mentawai Islands, SW Sumatra. Geophysical Journal International, 180(2), 703-714. 2010. https://doi.org/10.1111/j.1365-246X.2009.04458.x
Stein, S., & Wysession, M. An introduction to seismology, earthquakes, and earth structure. John Wiley & Sons. 2009.
Storchak, D. A., Harris, J., Brown, L., Lieser, K., Shumba, B., Verney, R., & Korger, E. I. Rebuild of the Bulletin of the International Seismological Centre (ISC), part 1: 1964–1979. Geoscience Letters, 4, 1-14. 2017. https://doi.org/10.1186/s40562-017-0098-z
Storchak, D. A., Harris, J., Brown, L., Lieser, K., Shumba, B., & Di Giacomo, D. Rebuild of the Bulletin of the International Seismological Centre (ISC)—part 2: 1980–2010. Geoscience Letters, 7(1), 1-21. 2020. https://doi.org/10.1186/s40562-020-00164-6
Suito, H., & Freymueller, J. T. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. Journal of Geophysical Research: Solid Earth, 114(B11). 2009. https://doi.org/10.1029/2008JB005954
Tanaka, Y., Hasegawa, T., Tsuruoka, H., Klemann, V., & Martinec, Z. Spectral-finite element approach to post-seismic relaxation in a spherical compressible Earth: application to gravity changes due to the 2004 Sumatra–Andaman earthquake. Geophysical Journal International, 200(1), 299-321. 2015. https://doi.org/10.1093/ gji/ggu391
Tsang, L. L., Meltzner, A. J., Philibosian, B., Hill, E. M., Freymueller, J. T., & Sieh, K. A 15 year slow‐slip event on the Sunda megathrust offshore Sumatra. Geophysical Research Letters, 42(16), 6630-6638. 2015. https://doi.org/10.1002/2015GL064928
UNAVCO . GPS Velocities Reference Frames. Available on: www.unavco.org/ software/visualization/GPS-Velocity-Viewer/GPS-Velocity-Viewer-frames.html (Last modified on 17 July 2024). 2015.
Van Bemmelen, R. W. General Geology of Indonesia and adjacent archipelagoes. The geology of Indonesia. 1949.
Wallace, L. M., Beavan, J., McCaffrey, R., & Darby, D. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. Journal of Geophysical Research: Solid Earth, 109(B12). 2004. https://doi.org/10.1029/2004JB003241
Wang, R., Lorenzo-Martín, F., & Roth, F. PSGRN/PSCMP—a new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Computers & Geosciences, 32(4), 527-541. 2006. https://doi.org/10.1016/j.cageo.2005.08.006
Wdowinski, S., Bock, Y., Zhang, J., Fang, P., & Genrich, J. Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 102(B8), 18057-18070. 1997. https://doi.org/10.1029/97JB01378
Wells, D. L., & Coppersmith, K. J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002. 1994. https://doi.org/10.1785/ BSSA0840040974
Wiseman, K., Bürgmann, R., Freed, A. M., & Banerjee, P. Viscoelastic relaxation in a heterogeneous Earth following the 2004 Sumatra–Andaman earthquake. Earth and Planetary Science Letters, 431, 308-317. 2015. https://doi.org/10.1016/ j.epsl.2015.09.024
Wyss, M., & Brune, J. N. Seismic moment, stress, and source dimensions for earthquakes in the California‐Nevada region. Journal of Geophysical Research, 73(14), 4681-4694. 1968. https://doi.org/10.1029/JB073i014p04681
Yadav, R. K., Kundu, B., Gahalaut, K., Catherine, J., Gahalaut, V. K., Ambikapthy, A., & Naidu, M. S. Coseismic offsets due to the 11 April 2012 Indian Ocean earthquakes (Mw 8.6 and 8.2) derived from GPS measurements. Geophysical Research Letters, 40(13), 3389-3393. 2013. https://doi.org/10.1002/grl.50601
Yong, C. Z., Denys, P. H., & Pearson, C. F. Present-day kinematics of the Sundaland plate. Journal of Applied Geodesy, 11(3), 169-177. 2017. https://doi.org/10.1515/jag-2016-0024
Yong, C. Z. Tectonic geodesy: an analysis of the crustal deformation of the western Sundaland plate from nearly two decades of continuous GPS measurements (Doctoral dissertation, University of Otago). 2019.
Yong, C. Z., Denys, P. H., & Pearson, C. F. Groundwater extraction-induced land subsidence: a geodetic strain rate study in Kelantan, Malaysia. Journal of Spatial Science, 64(2), 275-286. 2019. https://doi.org/10.1080/14498596.2018.1429329
Yuzariyadi, M., & Heki, K. Enhancement of interplate coupling in adjacent segments after recent megathrust earthquakes. Tectonophysics, 801, 228719. 2021. https://doi.org/10.1016/j.tecto.2021.228719
校內:2028-02-29公開