簡易檢索 / 詳目顯示

研究生: 陳孟鋒
Chen, Meng-Feng
論文名稱: 高斯程序應用於非穩定性訊號分離
Gaussian Process for Nonstationary Signal Separation
指導教授: 簡仁宗
Chien, Jen-Tzung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 93
中文關鍵詞: 高斯程序訊號分離獨立成份分析
外文關鍵詞: Gaussian process, blind source separation, independent component analysis
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 獨立成份分析(Independent Component Analysis, ICA)模型被廣泛應用於未知訊號源分離(Blind Source Separation, BSS)上,其目標是將麥克風蒐集到的混和訊號中分離出原始訊號。在以往標準的BSS方法中,假設所有來源訊號的統計特性是穩定的,也就是未知訊號的機率密度函數是固定且不會隨時間而改變。然而,在實際應用系統中,來源訊號的統計特性通常是非穩定的,也就是統計特性會隨時間而改變,例如未知訊號可能在某個時間點突然消失或是出現,甚至獨立訊號來源會被另外一個訊號來源所取代,因此對應的未知訊號源的統計特性也要隨著改變;而另外一個非穩定性的議題就是當未知訊號源移動時,其混合係數也會隨著改變,因此過去標準的獨立成份分析演算無法適用及解決這些非穩定的來源訊號分離的問題。
    為了解決上述BSS問題,本論文提出了一套新穎的非穩定性訊號分離的演算法,相較於傳統僅使用高階統計量及以資訊理論為主的獨立成份分析模型,此演算法是基於資料的二階統計量,也就是將來源訊號在時間上的關聯性考慮進來,透過高斯程序(Gaussian Process, GP)模型來描述隨著時間改變的混合矩陣係數和具有時間關係的來源訊號的時間結構。高斯程序屬於非參數型的演算法,具有較佳的彈性及計算簡單的優點,能確切的建立起來源訊號的時間結構,最後再透過線上貝氏學習機制,以漸近式的方式來估測模型參數並分離非穩定的來源訊號。實驗中,模擬了許多不同非穩定的條件情境以及多種不同機率分佈的來源訊號,交叉驗證了此方法在不同非穩定的條件情境和來源訊號具有任意機率分佈的假設下都能達到良好的訊號分離的效果。

    Blind source separation (BSS) is a procedure of reconstructing the original source signals from mixed signals. The standard BSS methods assume a fixed set of stationary source signals with the fixed distribution functions. In many real-world applications, the source signals are nonstationary and temporally correlated; e.g. source signal may abruptly active or inactive or even the source may be replaced by the other one.
    In order to deal with the nonstationary mixing system, we present a new nonstationary BSS algorithm. Different from the high-order statistics ICA algorithm, the proposed nonstationary BSS algorithm is based on the second-order statistics, e.g. we consider temporal structure of the source signals. In this study, we employ Gaussian process (GP) model to characterize the time-varying mixing coefficients and the temporally correlated source signals. We perform an online Bayesian learning procedure for dynamic source separation. A variational Bayesian algorithm is established to estimate the parameters in a noisy mixing process where GP priors are adopted to express the temporally correlated sources and the time-varying mixing matrix. In the experiments, we demonstrate the effectiveness of proposed method in separation of the mixed speech signals in cases of different scenarios.

    中文摘要 I ABSTRACT III 誌謝 V 章節目錄 VII 圖目錄 X 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方法簡介 4 1.4章節概要 5 第二章 獨立成份分析 7 2.1 獨立成份分析基本理論 8 2.1.1 中央極限定理 10 2.1.2 非高斯特性與峰態 11 2.1.3 集中化、白色化 13 2.2最佳化演算法 14 2.3 獨立成份分析演算法目標函數 15 2.3.1負熵(Negentropy) 16 2.3.2最大相似度函數 16 2.3.3交互資訊 17 第三章 貝氏和非穩定獨立成份分析 19 3.1 以高階統計量為基礎之獨立成份分析 21 3.1.1 噪音的獨立成份分析模型(Noisy ICA Model) 21 3.1.2 隱藏式馬可夫模型(Hidden Markov Model) 26 3.1.3 切換式獨立成份分析(Switching ICA) 27 3.1.4 線上變異性貝氏 (Online Variational Bayesian) 30 3.1.5 非穩定性獨立成份分析(Non-stationary ICA) 32 3.1.6 區塊調適獨立成份分析(Block Adaptive ICA) 33 3.2 以二階統計量為基礎之獨立成份分析 34 3.2.1 複雜度追蹤(Complexity Pursuit) 34 3.2.2 自動回歸模型(Auto-Regression Model, AR) 36 3.2.3 時變自動回歸模型(Time-varying AR model) 37 3.2.4 高斯程序模型(Gaussian Process Model) 38 3.3 不同未知訊號源分離演算法之比較 41 第四章 高斯程序應用於動態訊號分離 44 4.1 非穩定性之訊號混合 45 4.2 模型建立 46 4.2.1 來源訊號模型 47 4.2.2 混和矩陣模型 50 4.2.3 圖形化模型 52 4.3 線上貝氏學習 54 4.4 模型推論 56 4.4.1 來源訊號模型更新 57 4.4.2 混合矩陣模型更新 60 4.4.3 噪音參數模型更新 62 4.4.4 高斯程序超參數更新 63 第五章 實驗 65 5.1 實驗設定 65 5.2 未知訊號分離實驗 65 5.2.1 人工混合訊號 67 5.3 實驗討論 80 第六章 結論與未來研究方向 83 6.1結論 83 6.2 未來研究方向 84 參考文獻 88

    [1] H. Attias, “A variational Bayesian framework for graphic model,” In Advances Neural Informationn on Processing Systems 12, S. A. Solla, T. K. Leen, and K. R. Muller Eds. Cambridge, MA: MIT Press, pp. 206-212, 2000.
    [2] C. M. Bishop, Pattern Recognition and Machine Learning, 2006.
    [3] C. M. Bishop and N. D. Lawrence, “Variational Bayesian independent component analysis,” Technical Report, University of Cambridge, 2000.
    [4] C. M. Bishop, “Variational principal components,” In Proceedings of ICANN’99, IEEE, vol. 1, pp. 509-514, 1999.
    [5] A. Belouchrani, K. Abed-Meraim, J. Cardoso, and E. Moulines, “A blind source separation technique using second-order statistics,” IEEE Transactions on Signal Processing, vol. 45, no. 2, 1997.
    [6] D. Burshtein, “Robust parametric modeling of durations in hidden Markov models,” IEEE Transactions on Speech and Audio Processing, vol. 4, no. 3, pp. 240-242, 1996.
    [7] G. Box and G. Tiao, Bayesian Inference in Statistical Analysis, John Wiley and Sons, 1973.
    [8] R. Boscolo, H. Pan, and V. P. Roychowdhury, “Non-parametric ICA,” In Proceedings of the Third International Workshop on Independent Component Analysis and Blind Signal Separation, San Diego, USA, pp. 13-18, 2001.
    [9] S. Bulek and N. Erdol, “Block adaptive ICA with a time varying Mixing Matrix,” Independent Component Analysis and Blind Signal Separation, pp. 90-95, 2009.
    [10] A. T. Cemgil, C. Févotteand, and S. J. Godsill, “Variational and stochastic inference for Bayesian source separation,” Digital Signal Processing, vol. 17, no. 5, pp. 891-913, 2007.
    [11] J.-T. Chien and G. H. Liao, “Transformation-based Bayesian predictive classification using online prior evolution,” IEEE Transactions on Speech and Audio Processing, vol. 9, no. 4, pp. 399-410, 2001.
    [12] J.-T. Chien and C.-H. Huang, “Bayesian learning of speech duration models,” IEEE Transactions on Speech and Audio Processing, vol. 11, no. 6, pp. 558-567, 2003.
    [13] J. Cardoso, “Informax and maximum likelihood for source separation,” IEEE Signal Processing Letters, vol. 4, no. 4, pp. 112-114, 1997.
    [14] K. Chan, T. W. Lee, and T. J. Sejnowski, “Variational learning of clusters of undercomplete nonsymmetric independent components,” Journal of Machine Learning Research, vol. 3, pp. 99-114, 2002.
    [15] K. Chan, T.-W. Lee, and T. J. Sejnowski, “Variational Bayesian learning of ICA with missing data,” Neural Computation., vol. 15, pp. 1991-2011, 2003.
    [16] P. Comon, “Independent component analysis, a new concept?” Signal Processing, vol. 36, pp. 287-314, 1994.
    [17] R. A. Choudreyand and S. J. Roberts, “Flexible Bayesian independent component analysis for blind source separation,” In Proceedings International Conference Independent Component Anal. Signal Separation, pp. 90-95, 2001.
    [18] R. A. Choudrey and S. J. Roberts, “Bayesian ICA with hidden Markov sources,” In Proceedings of the 4th International Symposium on Independent Component Analysis and Blind Signal Separation, pp. 809-814, 2003.
    [19] J. Eriksson, J. Karvanen, and V. Koivunen, “Source distribution adaptive maximum likelihood estimation of ICA model,” In Proceedings of the Third International Workshop on Independent Component Analysis and Blind Signal Separation, vol. 2, pp. 411-430, 2001.
    [20] J. Eriksson, A. Kanhainen, and V. Koivunen, “Novel characteristic function based criteria for ICA,” In Proceedings of the Third International Workshop on Independent Component Analysis and Blind Signal Separation, vol. 2, pp. 781-785, 2001.
    [21] R. Everson and S. J. Roberts, “Non-stationary independent component analysis,” In Proceedings of ICANN, pp. 503-508, 1999.
    [22] C. Gouy-Pailler, M. Congedo, C. Brunner, C. Jutten, and G. Pfurtscheller, “Non-stationary brain source separation for multi-class motor imagery,” IEEE Transactions on Biomedical Engineering, 2010.
    [23] R. Guidara, S. Hosseini and Y. Deville, “Markovian blind separation of non-stationary temporally correlated sources,” European Symposium on Artificial Neural Networks, 2007.
    [24] H.-L. Hsieh and J.-T. Chien, “Online Bayesian learning for dynamic source separation,” In Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing, pp. 1950-1953, 2010.
    [25] A. Hyvärinen, “Survey on independent component analysis,” Neural Computing Surveys, vol. 2, pp. 94-128, 1999.
    [26] A. Hyvärinen and E. Oja, “Independent component analysis: algorithm and application,” Neural Networks, vol. 13, pp. 411-430, 2001.
    [27] A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analysis, Wiley, New York, 2001.
    [28] A. Honkela and H. Valpola, “On-line variational Bayesian learning,” In Proceedings of the 4th International Symposium on Independent Component Analysis and Blind Signal Separation, pp.803-808, 2003.
    [29] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Transactions on Neural Network, vol. 10, pp. 626-634, 1999.
    [30] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent component analysis,’ Neural Computation, vol. 9, pp. 1483-1492, 1997.
    [31] J. Hirayama, S. Maeda and S. Ishii, “Markov and semi-Markov switching of source appearances for nonstationary independent component analysis,” IEEE Transactions on Neural Networks, vol. 18, no. 5, pp. 1326-1342, 2007.
    [32] K. Hild, D. Erdogmus, and J. Principe, “Blind source separation using Renyi’s mutual information,” IEEE Signal Processing Letters, vol. 8, no .6, pp. 174-176, 2001.
    [33] Q. Huang, J. Yang, S. Wei, “Temporally correlated source separation using variational Bayesian learning approach,” Digital Signal Processing, vol. 17, pp. 873–890, 2007.
    [34] Q. Huang, J. Yang, Y. Xue, Y. Zhou, “Temporally correlated source separation based on variational Kalman smoother,” Digital Signal Processing, vol. 18, pp. 422–433, 2008.
    [35] X. D. Huang, Y. Ariki, and M. A. Jack, Hidden Markov Models for Speech Recognition. Edinburgh University Press, 1990.
    [36] S. Ikeda, “Factor analysis preprocessing for ICA,” In Proceedings of the Third International Workshop on Independent Component Analysis and Blind Signal Separation, San Diego, USA, pp. 29-35, 2001.
    [37] B. H. Juang, Pattern Recognition in Speech and Language Processing, CRC Press, 2003.
    [38] H. Jiang, K. Hirose, and Q. Huo, “Robust speech recognition based on a Bayesian prediction approach,” IEEE Transactions on Speech and Audio Processing, vol. 7, no. 4, 1999.
    [39] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to variational methods for graphical models,” Machine Learning, vol. 37, pp. 183-233, 1999.
    [40] K. Kiviluoto and E. Oja, “Independent component analysis for parallel financial time series,” In Proceedings of the International Conference on Neural information Processing (ICONIP ’98), vol. 2, pp. 895-898, 1998.
    [41] J. B. Kruskal, “Toward a practical method which helps uncover the structure of a set of observations by finding the line transformation which optimizes a new index of condensation,” Milton, RC, & Nelder, JA (eds), Statistical Computation, New York, Academic Press, pp. 427–440, 1969.
    [42] R. Lambert and A. Bell, “Blind separation of multiple speakers in a multipath environment,” In Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing, vol. 1, pp. 423-426, 1997.
    [43] D. J. C. MacKay, “Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks,” Network: Computation in Neural Systems, vol. 6, pp. 469-505, 1995.
    [44] S. Makeig, A. Bell, T. Jung, and T. Sejnowski, “Independent component analysis of electroencephalographic,” Advances in Neural Information Processing System, vol. 8, Cambridge, MA: MIT Press, pp. 145-151, 1996.
    [45] S. Park and S. Choi, “Source Separation with Gaussian Process Models,” European Conference on Machine Learning, 2007.
    [46] S. Park and S. Choi, “Gaussian Processes for Source Separation,” In Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing, pp. 1909-1912, 2008.
    [47] W. D. Penny, R. M. Everson, and S. J. Roberts, “Hidden Markov independent components analysis,” in Advances in Independent Component Analysis, pp. 3-22, 2000.
    [48] D.-T. Pham and J.-F. Cardoso, “Blind separation of instantaneous mixtures of nonstationary sources,” International conference on Independent Component Analysis and Signal Separation, 2000.
    [49] L. R. Rabiner and B. H. Juang, Fundamentals of Speech Recognition. Englewood Cliffs, NJ: Prentice-Hall, 1993.
    [50] B. Rivet, “Blind non-stationary sources separation by sparsity in a linear instantaneous mixture,” International conference on Independent Component Analysis and Signal Separation, pp. 314-321, 2009.
    [51] H. Saruwatari, K. Sawai, A. LEE, K. Shikano, A. Kaminuma, and M. Sakata, “Speech enhancement and recognition in car environment using blind source separation and subband elimination processing,” in Proceedings of the Fourth International Workshop on Independent Component Analysis and Blind Signal Separation, vol. 2, pp. 1135-1146, 2003.
    [52] J. V. Stone, “Blind source separation using temporal predictability,” Neural Computation, vol. 13, no. 7, pp. 1559–1574, 2001.
    [53] P. Tichavsky, E. Doron, A. Yeredor and J. Nielsen, “A Computationally Affordable Implementation of An Asymp-totically Optimal BSS Algorithm for AR Sources,” European Signal Processing Conference, 2006.
    [54] O. Winther and K. B. Petersen, “Flexible and efficient implementations of Bayesian independent component analysis,” Neurocomputing, vol. 71, pp. 221-233, 2007.
    [55] S. Watanabe, Y. Minami, A. Nakamura, and N. Ueda, “Variational Bayesian estimation and clustering for speech recognition,” IEEE Transactions on Audio, Speech And Language Processing, vol. 12, no. 4, pp. 365-381, 2004.
    [56] H. H. Yang and S.I. Amari, “Adaptive online learning algorithms for blind separation: maximum entropy and minimum mutual information,” Neural Computation, vol. 9, pp. 1457-1482, 1997.
    [57] A. Yeredor, “Blind separation of Gaussian sources via second-order statistics with asymptotically optimal weighting,” IEEE Signal Processing Letters, vol. 7, no. 7, 2000.
    [58] K. Yu and M. J. F. Gales, “Bayesian adaptive inference and adptive training,” IEEE Transactions on Audio, Speech and Language Processing, vol. 15, no. 6, 2007.
    [59] K. Yu and M. J. F. Gales, “Incremental adaptation using Bayesian inference,” In Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing, pp. 217-220, 2006.
    [60] Y. Zhang and M. G. Amin, “Blind separation of nonstationary sources based on spatial time-frequency distributions,” EURASIP Journal on Applied Signal Processing, 2006.

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE