| 研究生: |
呂子豪 Lu, Tzu-Hao |
|---|---|
| 論文名稱: |
生命週期評估於試驗規模成效之分析–以電廠中之微藻養殖系統用以生產藻藍素為案例 Use of LCA in leveraging effectiveness of pilot experimental studies – a case study in algal cultivation system for phycocyanin extraction attached to a power plant |
| 指導教授: |
福島康裕
Yasuhiro fukushima |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 試驗規模 、生命週期評估 、微藻 、藻藍素(藻藍蛋白) |
| 外文關鍵詞: | Pilot scale experiment, Life cycle assessment, Microalgae, Phycocyanin |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植物及微生物等生物資源是常被用來製作營養物、化學物質以及燃料的原物料。與開採石化資源不同,他們可藉由控制生物的品種以及養殖方法來提供程序設計者更多機會去設計更密集的開發程序以產得更高質量的產品。因此,以生物資源作為原料來生產石油等物品,並在設計上考量到這些新的設計參數,將可使整個程序的產值達到穩定且最佳化。然而,在許多生長以及轉化程序的參數間,也有著複雜且充滿不確定性的關係,以戶外或溫室培養為例,其培養時存在的不確定因素多半來自於氣候的變化(例如陽光照射強度、溫度、溼度等)。因此,為了反映出這些不確定性因素所造成的影響,試驗規模系統的輔助在分析模擬上是必要的,而考慮到其高成本,需對環境以及經濟層面的影響進行各別的探討,再藉由其實驗結果繼續針對各熱點因子進行個別分析,並藉此設計出改善系統的策略,以有效減低試驗規模系統的花費及其對環境的衝擊。
在本研究中,以高雄電廠中一試驗規模的微藻養殖系統為例,希望藉此使整個系統在藻藍素 (一蛋白質複合色素) 生產上達到環境及經濟的最佳化。
試驗規模系統中的各項數據可用來進行生命週期盤查,並藉此找到可以降低整個系統在環境以及經濟面向的影響因子,因此,此研究旨在藉由評估所有與系統相關之參數,以規劃進一步的試驗目標。舉例來說,利用多批次的試驗來測試廢水的回收效益,並藉此探討輸入端的減量效果,或是藉由改變培養環境(改變光源強度)來提高乾藻以及藻藍素的產量,這些都是根據研究結果所建議的改善策略。此外,隨培養時間變動的藻藍素含量以及乾藻產量也是使此系統在環境以及經濟面向達到最佳化的關鍵因素。
Bio-resources, such as plants and microorganisms, has become important as raw materials for nutrients, chemicals and fuels. Unlike in exploitation of petro-leum resources, process designers that consider use of bio-resources have oppor-tunity to choose cultivars and methods of cultivation and harvesting that affect the quality and yield over seasons. Conversion processes that are designed to maxim-ize profit assuming a constant, or planned input of petroleum-based raw materials now needs to consider these new design parameters in the design of the whole system.
The integrated cultivation and conversion processes have parameters that are mutually related across the processes, and has relatively greater uncertainty especially when the cultivation process is open air, or in greenhouse, as it is affected by the meteorological conditions. Pilot experiments become important to correctly reflect such uncertainty in the process design. Considering the high cost of pilot experiments, it is important that the system-wide economic and environmental evaluation is performed concurrently at the pilot experiments stage, to leverage the effectiveness of the experiments by identifying the experimental conditions to be explored, and to highlight the need of alternative methods to cut down cost and environmental impacts at the hotspots.
Here, we examine an existing pilot plant constructed within a power plant in Kaohsiung, which aims to produce phycocyanin, a kind of pigment-protein complex from microalgae. Life cycle inventory was constructed based on pilot scale experiments to explore the opportunity for reduction of associated costs and environmental burdens. As a result, need of further study is screened out from among numerous parameters. For example, continuous experiment of two or more cultivation cycles with water and nutrient recycling is recommended as a result of hotspot analysis. In addition, changed of culture environment such as growth within controlled light intensity also suggested on profit optimization of either dried algae yield or phycocyanin content changed. Furthermore, a shifted cultivation period with measurement of phycocyanin content and dried algae yield is found crucial in harnessing maximum economic and environmental potentials of the evaluated system.
1. Chiu, S.-Y., Establishing a Microalgae-incorporated Photobioreactor System for CO2 Reduction and Microalgal Biomass Production. 2012: p. 2.
2. Curran, M., Life Cycle Assessment: Principles and Practice (2006). Retrieved May, 2006. 13: p. 2010.
3. Curran, M.A., Report on Activity of Task Force 1: Data Registry-Global Life Cycle Inventory Data Resources. The International Journal of Life Cycle Assess-ment, 2006. 11(4): p. 284-289.
4. Chen, F. Y. Zhang, and S. Guo, Growth and phycocyanin formation of Spiruli-na platensis in photoheterotrophic culture. Biotechnology letters, 1996. 18(5): p. 603-608.
5. Cisneros, M. and M. Rito-Palomares, A simplified strategy for the release and primary recovery of c-phycocyanin produced by Spirulina maxima. Chem. Bio-chem. Eng. Q, 2004. 18(4): p. 385-390.
6. Raymond, M.J., C.S. Slater, and M.J. Savelski, LCA approach to the analysis of solvent waste issues in the pharmaceutical industry. Green Chemistry, 2010. 12(10): p. 1826-1834.
7. Brentner, L.B., M.J. Eckelman, and J.B. Zimmerman, Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environmental science & technology, 2011. 45(16): p. 7060-7067.
8. Spolaore, P., et al., Commercial applications of microalgae. Journal of biosci-ence and bioengineering, 2006. 101(2): p. 87-96.
9. Chisti, Y., Biodiesel from microalgae. Biotechnology advances, 2007. 25(3): p. 294-306.
10. Jiménez, C., et al., The Feasibility of industrial production of Spirulina Ar-throspira) in Southern Spain. Aquaculture, 2003. 217(1): p. 179-190.
11. Sialve, B., N. Bernet, and O. Bernard, Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology advances, 2009. 27(4): p. 409-416.
12. Ho, S.-H., et al., Perspectives on microalgal CO2-emission mitigation sys-tems—A review. Biotechnology advances, 2011. 29(2): p. 189-198.
13. Chen, F. and Y. Zhang, High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. En-zyme and microbial technology, 1997. 20(3): p. 221-224.
14. Gavrilescu, M. and Y. Chisti, Biotechnology—a sustainable alternative for chemical industry. Biotechnology advances, 2005. 23(7): p. 471-499.
15. Wijffels, R.H., Potential of sponges and microalgae for marine biotechnology. Trends in biotechnology, 2008. 26(1): p. 26-31.
16. Borowitzka, M.A., Microalgae for aquaculture: opportunities and constraints. Journal of Applied Phycology, 1997. 9(5): p. 393-401.
17. Borowitzka, M.A., Algal biotechnology products and processes—matching science and economics. Journal of Applied Phycology, 1992. 4(3): p. 267-279.
18. Herrera, A., et al., Recovery of c-phycocyanin from the cyanobacteriumSpir-ulina maxima. Journal of applied phycology, 1989. 1(4): p. 325-331.
19. Reis, A., et al., Production, extraction and purification of phycobiliproteins from Nostoc sp. Bioresource technology, 1998. 66(3): p. 181-187.
20. Bermejo, R., et al., Preparative purification of B-phycoerythrin from the mi-croalga Porphyridium cruentum by expanded-bed adsorption chromatography. Journal of Chromatography B, 2003. 790(1): p. 317-325.
21. Oliveira, E., et al., Phycocyanin content of Spirulina platensis dried in spouted bed and thin layer. Journal of food process engineering, 2008. 31(1): p. 34-50.
22. 韓士群, 試劑級藻藍蛋白規模化製備方法. 中國國家知識產權局, 2012.
23. Khoeyi, Z.A., J. Seyfabadi, and Z. Ramezanpour, Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International, 2012. 20(1): p. 41-49.
24. Taiwan Power Company. 2013.
25. Taiwan Water Corporation. 2010; Available from: http://www.water.gov.tw/.
26. Bureau, I.d., Ministry of Economic Affairs. 2013.
27. Chen, G.Q. and B. Zhang, Greenhouse gas emissions in China 2007: Inventory and input–output analysis. Energy Policy, 2010. 38(10): p. 6180-6193.
28. Li, S. and H. Altan, Environmental Impact Balance of Building Structures and Substitution Effect of Wood Structure in Taiwan. International Journal of Envi-ronmental Protection, 2012.
29. Burkhardt III, J.J., G.A. Heath, and C.S. Turchi, Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environmental science & technology, 2011. 45(6): p. 2457-2464.
30. Van Duuren, J., et al., A limited LCA of bio‐adipic acid: Manufacturing the nylon‐6, 6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks. Biotechnology and bioengineering, 2011. 108(6): p. 1298-1306.
31. Centre, E., Ecoinvent data v.2.2, Swiss centre for life cycle inventories, Dubendorf, Switzerland, 2010.
32. Alibaba group. 2014; Available from: http://www.alibaba.com/.
33. Bureau of Energy, M.o.E.A., 2013.
34. EU to Propose Carbon Tax on Fuels. The Wall Street Journal, 2011.
35. Yang, J., et al., Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource technology, 2011. 102(1): p. 159-165.
36. Eriksen, N.T., Production of phycocyanin—a pigment with applications in bi-ology, biotechnology, foods and medicine. Applied microbiology and biotechnol-ogy, 2008. 80(1): p. 1-14.