| 研究生: |
李守慧 Lestari, Cahyaning |
|---|---|
| 論文名稱: |
有機溶液及離子液體電解質在電雙層電容器應用之比較 Comparison of Organic Liquid Solution and Ionic Liquid as Electrolytes for Electric Double Layer Capacitors |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 電容行為 、穩定性 、FTIR |
| 外文關鍵詞: | capacitive behavior, stability, FTIR |
| 相關次數: | 點閱:72 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具電容行為的電解質(MPPy TFSI, 1M MPPy TFSI/PC 1.5M MPPy TFSI/PC, 和1M Et4NBF4/PC)配合不同的碳電極(aMP, aCF, tMC) 製做電容器,且進行循環伏安法、定電流充放電、交流阻抗分析等測試。電化學測試中,放電速率會影響電容行為。在高放電速率下,電容行為深受電解質的特性影響,如電解質的黏度和導電度,這兩個特性的影響能在交流阻抗分析中的高頻區觀察到。使用1.5M MPPy TFSI/PC電解質的電容器在高放電速率下具優秀的電容行為。電容器將使用MPPy TFSI/PC和1M Et4NBF4/PC,工作電壓分別為4V和3V下進行10000圈的定電流循環充放電測試,並於測試後用FTIR觀察碳電極變化。當使用MPPy TFSI/PC時,aMP的電容保持率高,而tMC因離子受困而只在7000圈保持穩定,在FTIR曲線中發現穿透率提高。aCF的FTIR曲線中能看出,經過電流循環充放電測試後,碳電極被還原,故電容值保持率低。當使用1M Et4NBF4/PC時,從FTIR曲線中看出較少離子受困和碳電極被還原的程度相對輕微,故具較高的電容值保持率。而aMP的電容值保持率差,因離子受困於正極。
The capacitive behavior of liquid based electrolyte (MPPy TFSI, 1M MPPy TFSI/PC 1.5M MPPy TFSI/PC, and 1M Et4NBF4/PC) in different carbon materials (aMP, aCF, tMC) was analyzed using cyclic voltammogram, galvanostatic charge discharge, and electrochemical impedance spectroscopy. The rate adjusted during the electrochemical measurement influence the capacitance behavior. At high sweep rate or current rate, the capacitive behavior is much influenced by the electrolyte properties such as viscosity and conductivity which is represented by EIS plot at high frequency region. 1.5M MPPy TFSI/PC shows the most capacitive behavior at high rate. The carbon materials were also analyzed using FTIR after cycling test using MPPy TFSI at 4V and 1M Et4NBF4/PC at 3V for 10000 cycles. When using MPPy TFSI at 4V, aMP has high retention. The tMC carbon was only stable until 7000 cycle due to ion trapping which can be seen from the increasing % transmittance in FTIR curve. The FTIR curve of aCF shows that the carbon reducted during cycling test thus aCF has less retention. When applying 1M Et4NBF4/PC at 3V as the electrolyte, aCF has the highest retention due to less ion trapping and no reduction on the carbon which can be seen from FTIR curve. aMP has the worst retention due to worse ion trapping on the positive electrode.
[1] H. Wang, A. C. Forse, J. M. Griffin, N. M. Trease, L. Trognko, P.-L. Taberna, et al., "In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism," Journal of the American Chemical Society, vol. 135, pp. 18968-18980, 2013.
[2] M. Deschamps, E. Gilbert, P. Azais, E. Raymundo-Piñero, M. R. Ammar, P. Simon, et al., "Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR," Nature materials, vol. 12, pp. 351-358, 2013.
[3] K. Urita, N. Ide, K. Isobe, H. Furukawa, and I. Moriguchi, "Enhanced Electric Double-Layer Capacitance by Desolvation of Lithium Ions in Confined Nanospaces of Microporous Carbon," ACS nano, vol. 8, pp. 3614-3619, 2014.
[4] L. L. Zhang and X. Zhao, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, vol. 38, pp. 2520-2531, 2009.
[5] J. Huang, B. G. Sumpter, and V. Meunier, "A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes," Chemistry-A European Journal, vol. 14, pp. 6614-6626, 2008.
[6] V. Khomenko, E. Frackowiak, and F. Béguin, "Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations," Electrochimica Acta, vol. 50, pp. 2499-2506, 4/15/ 2005.
[7] H. A. Every, A. G. Bishop, D. R. MacFarlane, G. Orädd, and M. Forsyth, "Transport properties in a family of dialkylimidazolium ionic liquids," Physical chemistry chemical physics, vol. 6, pp. 1758-1765, 2004.
[8] H. Tokuda, K. Ishii, M. A. B. H. Susan, S. Tsuzuki, K. Hayamizu, and M. Watanabe, "Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures," The Journal of Physical Chemistry B, vol. 110, pp. 2833-2839, 2006.
[9] R. M. Couto, C. Lourenco, J. C. Lima, P. C. Simoes, and L. C. Branco, "Studies of the Influence in Acetonitrile Polarity Using Imidazolium Ionic Liquids as Additives," Journal of Chemical and Engineering Data, vol. 58, pp. 1449-1453, Jun 2013.
[10] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, "Ionic-liquid materials for the electrochemical challenges of the future," Nat Mater, vol. 8, pp. 621-629, 08//print 2009.
[11] C.-W. Huang, C.-T. Hsieh, P.-L. Kuo, and H. Teng, "Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes," Journal of Materials Chemistry, vol. 22, pp. 7314-7322, 2012.
[12] H.-Y. Liu, K.-P. Wang, and H. Teng, "A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation," Carbon, vol. 43, pp. 559-566, // 2005.
[13] C.-W. Huang, C.-A. Wu, S.-S. Hou, P.-L. Kuo, C.-T. Hsieh, and H. Teng, "Gel Electrolyte Derived from Poly(ethylene glycol) Blending Poly(acrylonitrile) Applicable to Roll-to-Roll Assembly of Electric Double Layer Capacitors," Advanced Functional Materials, vol. 22, pp. 4677-4685, 2012.
[14] S. A. Al-Muhtaseb and J. A. Ritter, "Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels," Advanced Materials, vol. 15, pp. 101-114, 2003.
[15] W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, et al., "Superior electric double layer capacitors using ordered mesoporous carbons," Carbon, vol. 44, pp. 216-224, 2// 2006.
[16] K. Xia, Q. Gao, J. Jiang, and J. Hu, "Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials," Carbon, vol. 46, pp. 1718-1726, 11// 2008.
[17] C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, and F. Béguin, "Electrochemical energy storage in ordered porous carbon materials," Carbon, vol. 43, pp. 1293-1302, 5// 2005.
[18] H.-C. Huang, C.-W. Huang, C.-T. Hsieh, and H. Teng, "Electric double layer capacitors of high volumetric energy based on ionic liquids and hierarchical-pore carbon," Journal of Materials Chemistry A, vol. 2, pp. 14963-14972, 2014.
[19] F. B. Sillars, S. I. Fletcher, M. Mirzaeian, and P. J. Hall, "Variation of electrochemical capacitor performance with room temperature ionic liquid electrolyte viscosity and ion size," Physical Chemistry Chemical Physics, vol. 14, pp. 6094-6100, 2012.
[20] M. Zhu, C. J. Weber, Y. Yang, M. Konuma, U. Starke, K. Kern, et al., "Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes," Carbon, vol. 46, pp. 1829-1840, 11// 2008.
校內:2019-02-13公開