簡易檢索 / 詳目顯示

研究生: 謝旻洲
Hsieh, Min-Chou
論文名稱: 複合長球體之熱流場
Steady State Potential Fields of a Matrix Containing a Multicoated Spheroid
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 99
中文關鍵詞: 熱傳導扁球體長球體
外文關鍵詞: heat conduction, oblate, prolate
相關次數: 點閱:90下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將要介紹正交曲線座標中的長球體座標以及與其類似的扁球體座標,並推導出這兩種座標的量度係數、比例因數以及Laplace方程式,然後用這兩種座標係統以及邊界條件,來求得在溫度場中的基質與內含物的溫度場的一般解,然後逐漸增加內含物的覆蓋層,求其溫度場一般解的遞迴關係,接著再將兩座標所求得的溫度場一般解相對照,並找出其異同。

    In this thesis we first make a description of two curvilinear orthogonal coordinates: prolate and oblate spheroidal coordinates. We review the detailed derivation procedures for the metric coefficients, scale factors and the governing equation for the Laplace equation. By using these coordinates and boundary conditions, the general solution of steady state temperature field for a spheroidal inclusion in an infinite matrix is examined. The same boundary value problem is also considered for a multicoated spheroidal inclusion in an unbounded matrix. We find the recursion relation for the general solution by incorporating the effects of multiple coatings with different constituent properties and volume fraction. The general solutions for these two different coordinates are compared. Finally, we propose a concept of neutral inclusion for modeling the imperfect interface between the inclusion and the matrix.

    摘要 I 誌謝 II 目錄 III 圖目錄 VI 第一章 緒論 1 1.1熱傳導簡介 1 1.2熱通量與溫度 1 1.3論文內容簡介 4 第二章 長球體與扁球體座標 5 (Prolate and oblate spheroidal coordinates) 5 2.1正交曲線座標(orthogonal curvilinear coordinates) 5 2.2量度係數與Laplace方程式 7 2.3長球體座標(Prolate spheroidal coordinates) 14 2.3.1定義長球體座標 15 2.3.2長球體座標與直角座標的轉換關係以及Laplace方程式 18 2.3.3長球體座標 定義以及範圍 19 2.3.5 與直角座標的轉換關係與Laplace方程式 22 2.4扁球體座標(Oblate spheroidal coordinates) 23 2.4.1扁球體座標用 表示 24 2.4.2扁球體座標與直角座標的轉換關係以及Laplace方程式 27 2.4.3扁球體座標 定義以及範圍 28 2.4.4 與直角座標的轉換關係與Laplace方程式 30 第三章 複合長球體的溫度場 32 3.1問題概述 32 3.2兩種材料的長球體溫度場 37 3.3 三種材料的長球體溫度場 44 3.4 四種材料的長球體溫度場 54 3.5多層材料 60 第四章 複合扁球體的溫度場 66 4.1問題概述 66 4.2兩種材料的扁球體溫度場 70 4.3 三種材料的扁球體溫度場 77 4.4多層材料 87 第五章 心得與未來展望 92 5.1 心得 92 5.2 中性內含物(neutral inclusion) 92 參考文獻 96 附錄A Legendre function 98

    Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972.

    Arfken, G., Mathematical Methods for Physicists, Harcourt/Academic Press, San Diego, 2001.

    Benveniste Y. and Miloh T., The Effective Conductivity of Composites with Imperfect Thermal Contact at Constituent Interfaces, Int. J. Engng Sci. 24, pp.1537-1552, 1986.

    Dunn M. L. and Taya M., The Effective Conductivity of Composites with Coated Reinforcement and The Application to Imperfect Interface, J. Appl. Phys. 73 pp.1711-1722, 1992.

    Duschlbauer D., Pettermann H. E. and Bohm H. J., Heat Conduction of a Spheroidal in Homogeneity with Imperfectly Bonded Interface, J. Appl. Phys. 94 pp.1539-1549, 2003.

    Hatta H. and Taya M., Thermal Conductivity of Coated Filler Composites, J. Appl. Phys. 59, pp.1851-1860, 1986.

    Hildebrand F. B., Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, N.J., 1976.

    Hobson E. W., The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Pub. Co., New York, 1931.

    J. C. Maxwell, Treatise on Electricity and Magnetism. 3 rd Edition, Oxford University Press, Oxford, 1904.

    Lamb H., Hydrodynamics, The University press, Cambridge [Eng.], 1932.

    L. M. Jiji, Heat Transfer Essentials: A Textbook, Begell House, Inc. New York, 1998.

    Moon, P. and Spencer, D. E., Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, Springer-Verlag, New York, 1988.

    Morse, P. M. and Feshbach H., Methods of Theoretical Physics, McGraw-Hill, New York, 1953.

    Ozisik, M., Boundary Value Problems of Heat Conduction, International Textbook Co., Scranton, 1968.

    Saada, Adel S., Elasticity theory and applications, Malabar, Fla, Krieger, 1993.

    Williams M M R, Thermophretic Forces Acting on a Spheroid, J. Phys. D: Appl. Phys.19 pp.1631-1642, 1986

    邱益成,複合橢圓柱之扭轉與傳導問題,國立成功大學土木工程研究所論文,2003。

    下載圖示 校內:立即公開
    校外:2006-08-03公開
    QR CODE