簡易檢索 / 詳目顯示

研究生: 洪嚴凱
Hung, Yen-Kai
論文名稱: 鐵酸鉍-鈦酸鋇-鐵酸鈷複合材料的磁性、介電與磁電性質和摻雜錳、鋅之影響
Magnetic, dielectric and magnetoelectric properties of BiFeO3-BaTiO3-CoFe2O4 composites and the effect of Mn,Zn doping
指導教授: 齊孝定
Qi, Xiao-ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 98
中文關鍵詞: 磁電耦合複合材料鐵酸鈷鐵酸鉍鈦酸鋇壓電係數
外文關鍵詞: Magnetoelectric coupling, composite materials, cobalt ferrite, bismuth ferrite, barium titanate, piezoelectric coefficient
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的為製備高磁電轉換效率的多鐵性BiFeO3-BaTiO3-CoFe2O4磁電複合塊材,以粉體固相合成法分別合成BFO和BTO的固溶體和CFO的單相,再以隨機均勻混合的方式(0-3type)燒結成塊材,再調整兩相之間的莫耳比例,找出最好的磁電耦合係數。
    本實驗會遇到的問題為:(1)BFO-BTO的固溶體在熱處理的狀況下,因為鉍會揮發,導致計量比偏移,進而產生雜項,例如Bi2FeO9、Bi25FeO29。(2)CFO和BFO-BTO固溶體燒結後,其界面不能產生化學反應且塊材的密度要夠高夠緻密。實驗燒結的升溫速度為5oC/min上升到600oC後持溫一小時將黏著劑(PVB)燒掉,再升到1000oC持溫2小時來製備所有試片。從XRD的掃描圖中,可以觀察到BFO-BTO、CFO與BFO-BTO-CFO複合材料均為純相,並無明顯的雜項產生。由SEM可以觀察到磁電複合材料的致密性表現優良,從TEM的界面分析中,可以看到明顯的輪廓且沒有相互擴散及化學反應的產生,從EDS分析中觀察BFO-BTO、CFO、BFO-BTO-CFO磁電複合材料的計量比沒有顯著的偏移,符合化學計量比,隨著CFO的莫耳比增加,可以觀察到複合材料的漏電流也隨之增加,推測主要是CFO中的Co和Fe有變價的產生使得電子間有流動。
    以阻抗分析儀測量界電係數與介電損耗可得知,由於BFO-BTO-CFO在磁電複合材料中為異質結構,在低頻率的狀況下(104Hz),因為空間電位極化,介電常數較高。隨著頻率的增加,因為介電質分散(disppersion),介電係數與介電損耗也隨之降低。由於本實驗的複合材料連接方式為隨機均勻混合鑲嵌模式複合(0-3type),連接性複雜,因此介電常數的高低並無法以兩相複合材料的莫耳比例來預測。
    在施加AC磁場頻率為1.5kHz和施加外加DC磁場2.5kOe~4kOe時,試片在此會產生諧振,會有明顯的峰值產生,BFO-BTO與CFO莫耳比為7比3的磁電複合材料在3.31kOe的外加DC磁場偏壓下有最大值,磁電係數為81.8mV/cm*Oe。實驗中也發現試片的厚度也會影響到磁電係數的高低,隨著試片的厚度愈薄,得到的磁電係數也越高,推測是試片之間傳導以及缺陷的問題,試片愈薄缺陷出現的機率也越低,愈薄所需要傳導的距離也較短,愈能將受到外加磁場的形變產生的力傳導到壓電相中已產生電流。
    隨著環保的意識提高,儘管含有鋯鈦酸鉛(PZT)的0-3type連接方式的磁電複合材料擁有非常大的磁電係數,本實驗使用無鉛的壓電材料在室溫下具有多鐵性的BFO-BTO系統,其具有高的居禮溫度、壓電係數。0-3type連接方式的磁電複合材料需要克服:(1)材料的密度要高(2)兩相界面是否有相互擴散化學反應的產生 (3)兩相須維持純相無雜相的產生(4)BFO-BTO的組員Bi容易揮發造成計量比的偏移,本實驗成功使用固相合成法並控制升溫速度、燒結時間、多配比Bi的含量來克服以上問題,得到最高的磁電偶合係數為81.8mV/cm*Oe。

    Magnetoelectric composites of CoFe2O4+ZnO and BiFeO3-BaTiO3+MnO2 were synthesized by solid-state sintering method. The composition and microstructure of obtained samples were examined by X-ray diffraction,scanning electron microscopy and Transmission electron microscope. The results showed a uniform mixture of both components in the composites without presence of any secondary phase. Dielectric constant and loss of the samples were studied by the impedance analysis. The piezoelectricity of the samples was confirmed by the measurement of d33 coefficient. Magnetoelectric (ME) voltage coefficient was investigated by a home-made unit,which allowed simultaneously application of both an AC (50kHz~100kHz) magnetic field of about 5Oe and a DC bias field up to 7000Oe. The highest ME coefficient was increased to 81.8mV/cm*Oe measured at the AC frequency of 1.5kHz with the DC bias of 3.31kOe,which was achieved with the 70-30 mole% BFO+BTO-CFO samples.

    摘要 I Extended Abstract III 致謝 XII 目錄 XIV 表目錄 XVI 圖目錄 XVII 第一章 序論 1 1-1多鐵性磁電材料簡介與應用 1 1-2 磁電複合材料之應用 6 1-2-1 磁感應器 6 1-2-2 記憶體儲存設備 9 1-2-3 能源轉換 11 1-3 研究動機 11 第二章 基礎理論 12 2-1磁性質介紹 12 2-1-1 磁性原理介紹 12 2-1-2 磁滯曲線 16 2-2 介電理論 17 2-2-1 介電性質 17 2-2-2 極化機制 18 2-2-3 介電鬆弛 21 2-2-4 鐵電性 25 2-2-5 電滯曲線 26 2-3 磁電效應 27 2-3-1 多鐵性材料 30 2-3-2 單相多鐵性材料 30 2-3-3 多鐵性複合材料 33 2-4 鐵酸鉍(BiFeO3)簡介 38 2-5 鈦酸鋇(BaTiO3)簡介 42 2-6 鐵酸鈷(CoFe2O4)簡介 43 第三章 實驗儀器介紹 45 3-1 X光繞射儀(X-Ray Diffractometer,XRD) 45 3-2掃描式電子顯微鏡(SEM) 47 3-3 壓電係數量測儀 47 3-4磁電效應量測系統(Magnetoelectric effect measure system) 47 3-5 鐵電測試儀(Ferroelectric tester) 50 3-6介電阻抗分析儀(Dielectric impedance analysis) 51 第四章 試片製備 52 4-1 BiFeO3-BaTiO3+1%MnO2 52 4-2 CoFe2O4+ZnO 53 4-3 (BiFeO3-BaTiO3+1%MnO2+ CoFe2O4+ZnO) 複合材料 54 第五章 結果與討論 56 5-1 相結構、EDS分析和EBSD分析: 56 5-2 壓電性質分析 72 5-3介電常數分析 74 5-4 漏電流分析 77 5-5電滯曲線 78 5-6 磁性量測與分析 80 5-7 磁電耦合量測 82 第六章 結論 91 參考文獻 92

    [1]Wang, Y., J. Hu, Y. Lin, and C.-W. Nan, Multiferroic magnetoelectric composite nanostructures. NPG Asia Materials, 2010. 2(2): p. 61-68.
    [2]Wang, Y., D. Gray, D. Berry, J. Gao, M. Li, J. Li, and D. Viehland, An extremely low equivalent magnetic noise magnetoelectric sensor. Advanced Materials, 2011. 23(35): p. 4111-4114.
    [3]Ma, J., Z. Shi, and C.W. Nan, Magnetoelectric properties of composites of single Pb (Zr, Ti) O3 rods and terfenol‐D/epoxy with a single‐period of 1‐3‐type structure. Advanced Materials, 2007. 19(18): p. 2571-2573.
    [4]Lam, K.H., C. Lo, and H. Chan, Frequency response of magnetoelectric 1–3-type composites. Journal of Applied Physics, 2010. 107(9).
    [5]Islam, R.A., C.-b. Rong, J. Liu, and S. Priya, Effect of gradient composite structure in cofired bilayer composites of Pb (Zr0.56Ti0.44)O3–Ni 0.6Zn 0.2Cu 0.2Fe2O4 system on magnetoelectric coefficient. Journal of Materials Science, 2008. 43: p. 6337-6343.
    [6]Islam, R.A., Y. Ni, A.G. Khachaturyan, and S. Priya, Giant magnetoelectric effect in sintered multilayered composite structures. Journal of Applied Physics, 2008. 104(4).
    [7]Islam, R.A., V. Bedekar, N. Poudyal, J.P. Liu, and S. Priya, Magnetoelectric properties of core-shell particulate nanocomposites. Journal of Applied Physics, 2008. 104(10).
    [8]Raidongia, K., A. Nag, A. Sundaresan, and C. Rao, Multiferroic and magnetoelectric properties of core-shell CoFe2O4@ BaTiO3 nanocomposites. Applied Physics Letters, 2010. 97(6).
    [9]Liu, M., X. Li, H. Imrane, Y. Chen, T. Goodrich, Z. Cai, K.S. Ziemer, J.Y. Huang, and N.X. Sun, Synthesis of ordered arrays of multiferroic NiFe2O4-Pb (Zr0. 52Ti0. 48) O3 core-shell nanowires. Applied Physics Letters, 2007. 90(15).
    [10]Andrew, J.S., J.D. Starr, and M.A. Budi, Prospects for nanostructured multiferroic composite materials. Scripta Materialia, 2014. 74: p. 38-43.
    [11]Xie, S., F. Ma, Y. Liu, and J. Li, Multiferroic CoFe 2 O 4–Pb (Zr 0.52 Ti 0.48) O 3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale, 2011. 3(8): p. 3152-3158.
    [12]Xie, S., J. Li, Y. Liu, L. Lan, G. Jin, and Y. Zhou, Electrospinning and multiferroic properties of NiFe2O4–Pb (Zr0. 52Ti0. 48) O3 composite nanofibers. Journal of Applied Physics, 2008. 104(2).
    [13]Chen, Y., S.M. Gillette, T. Fitchorov, L. Jiang, H. Hao, J. Li, X. Gao, A. Geiler, C. Vittoria, and V. Harris, Quasi-one-dimensional miniature multiferroic magnetic field sensor with high sensitivity at zero bias field. Applied Physics Letters, 2011. 99(4).
    [14]Dong, S., J. Zhai, J. Li, and D. Viehland, Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Applied Physics Letters, 2006. 89(25).
    [15]Dong, S., J. Zhai, Z. Xing, J. Li, and D. Viehland, Giant magnetoelectric effect (under a dc magnetic bias of 2Oe) in laminate composites of FeBSiC alloy ribbons and Pb (Zn1∕ 3, Nb2∕ 3) O3–7% PbTiO3 fibers. Applied Physics Letters, 2007. 91(2).
    [16]Feng, M., J.-j. Wang, J.-M. Hu, J. Wang, J. Ma, H.-B. Li, Y. Shen, Y.-H. Lin, L.-Q. Chen, and C.-W. Nan, Optimizing direct magnetoelectric coupling in Pb (Zr, Ti) O3/Ni multiferroic film heterostructures. Applied Physics Letters, 2015. 106(7).
    [17]Gillette, S.M., T. Fitchorov, O. Obi, L. Jiang, H. Hao, S. Wu, Y. Chen, and V.G. Harris, Effects of intrinsic magnetostriction on tube-topology magnetoelectric sensors with high magnetic field sensitivity. Journal of Applied Physics, 2014. 115(17).
    [18]Greve, H., E. Woltermann, H.-J. Quenzer, B. Wagner, and E. Quandt, Giant magnetoelectric coefficients in (Fe90Co10) 78Si12B10-AlN thin film composites. Applied Physics Letters, 2010. 96(18).
    [19]Islam, R.A., H. Kim, S. Priya, and H. Stephanou, Piezoelectric transformer based ultrahigh sensitivity magnetic field sensor. Applied Physics Letters, 2006. 89(15).
    [20]Kambale, R.C., D. Patil, J. Ryu, Y.S. Chai, K.H. Kim, W.-H. Yoon, D.-Y. Jeong, D.-S. Park, J.-W. Kim, and J.-J. Choi, Colossal magnetoelectric response of PZT thick films on Ni substrates with a conductive LaNiO3 electrode. Journal of Physics D: Applied Physics, 2013. 46(9): p. 092002.
    [21]Mandal, S., G. Sreenivasulu, V. Petrov, and G. Srinivasan, Magnetization-graded multiferroic composite and magnetoelectric effects at zero bias. Physical Review B, 2011. 84(1): p. 014432.
    [22]Martínez, R., A. Kumar, R. Palai, G. Srinivasan, and R. Katiyar, Observation of strong magnetoelectric effects in Ba0. 7Sr0. 3TiO3/La0. 7Sr0. 3MnO3 thin film heterostructures. Journal of Applied Physics, 2012. 111(10).
    [23]McDannald, A., M. Staruch, G. Sreenivasulu, C. Cantoni, G. Srinivasan, and M. Jain, Magnetoelectric coupling in solution derived 3-0 type PbZr0. 52Ti0. 48O3: xCoFe2O4 nanocomposite films. Applied Physics Letters, 2013. 102(12).
    [24]Mori, K. and M. Wuttig, Magnetoelectric coupling in Terfenol-D/polyvinylidenedifluoride composites. Applied Physics Letters, 2002. 81(1): p. 100-101.
    [25]Nair, S.S., G. Pookat, V. Saravanan, and M. Anantharaman, Lead free heterogeneous multilayers with giant magneto electric coupling for microelectronics/microelectromechanical systems applications. Journal of Applied Physics, 2013. 114(6).
    [26]Palneedi, H., D. Maurya, G.-Y. Kim, S. Priya, S.-J.L. Kang, K.-H. Kim, S.-Y. Choi, and J. Ryu, Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate. Applied Physics Letters, 2015. 107(1).
    [27]Park, C.-S., K.-H. Cho, M.A. Arat, J. Evey, and S. Priya, High magnetic field sensitivity in Pb (Zr, Ti) O3–Pb (Mg1/3Nb2/3) O3 single crystal/Terfenol-D/Metglas magnetoelectric laminate composites. Journal of Applied Physics, 2010. 107(9).
    [28]Park, C.-S., A. Khachaturyan, and S. Priya, Giant magnetoelectric coupling in laminate thin film structure grown on magnetostrictive substrate. Applied Physics Letters, 2012. 100(19).
    [29]Silva, M., S. Reis, C. Lehmann, P. Martins, S. Lanceros-Mendez, A. Lasheras, J. Gutiérrez, and J. Barandiarán, Optimization of the magnetoelectric response of poly (vinylidene fluoride)/epoxy/vitrovac laminates. ACS applied materials & interfaces, 2013. 5(21): p. 10912-10919.
    [30]Sreenivasulu, G., L. Fetisov, Y. Fetisov, and G. Srinivasan, Piezoelectric single crystal langatate and ferromagnetic composites: Studies on low-frequency and resonance magnetoelectric effects. Applied Physics Letters, 2012. 100(5).
    [31]Srinivasan, G., E. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan, and V. Laletin, Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Physical Review B, 2001. 64(21): p. 214408.
    [32]Tahmasebi, K., A. Barzegar, J. Ding, T. Herng, A. Huang, and S. Shannigrahi, Magnetoelectric effect in Pb (Zr0. 95Ti0. 05) O3 and CoFe2O4 heteroepitaxial thin film composite. Materials & Design, 2011. 32(4): p. 2370-2373.
    [33]Ramanaa, M.V., N.R. Reddy, G. Sreenivasulu, B. Murty, and V. Murthy, Enhanced mangnetoelectric voltage in multiferroic particulate Ni0. 83Co0. 15Cu0. 02Fe1. 9O4− δ/PbZr0. 52Ti0. 48O3 composites–dielectric, piezoelectric and magnetic properties. Current Applied Physics, 2009. 9(5): p. 1134-1139.
    [34]Wang, Y., X. Zhao, J. Jiao, Q. Zhang, W. Di, H. Luo, C.M. Leung, and S.W. Or, Lead-free magnetoelectric laminated composite of Mn-doped Na0. 5Bi0. 5TiO3–BaTiO3 single crystal and Tb0. 3Dy0. 7Fe1. 92 alloy. Journal of Alloys and Compounds, 2010. 496(1-2): p. L4-L6.
    [35]Zhang, N., J. Fan, X. Rong, H. Cao, and J. Wei, Magnetoelectric effect in laminate composites of Tb1− xDyxFe2− y and Fe-doped BaTiO3. Journal of Applied Physics, 2007. 101(6).
    [36]Liu, M. and N.X. Sun, Voltage control of magnetism in multiferroic heterostructures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014. 372(2009): p. 20120439.
    [37]Fang, C., J. Jiao, J. Ma, D. Lin, H. Xu, X. Zhao, and H. Luo, Significant reduction of equivalent magnetic noise by in-plane series connection in magnetoelectric Metglas/Mn-doped Pb (Mg1/3Nb2/3) O3-PbTiO3 laminate composites. Journal of Physics D: Applied Physics, 2015. 48(46): p. 465002.
    [38]Zhang, Y., Z. Li, C. Deng, J. Ma, Y. Lin, and C.-W. Nan, Demonstration of magnetoelectric read head of multiferroic heterostructures. Applied Physics Letters, 2008. 92(15).
    [39]Ryu, J., J.-E. Kang, Y. Zhou, S.-Y. Choi, W.-H. Yoon, D.-S. Park, J.-J. Choi, B.-D. Hahn, C.-W. Ahn, and J.-W. Kim, Ubiquitous magneto-mechano-electric generator. Energy & Environmental Science, 2015. 8(8): p. 2402-2408.
    [40]Zhang, Y., Z. Li, C. Deng, J. Ma, Y. Lin, and C.-W. Nan, Demonstration of magnetoelectric read head of multiferroic heterostructures. Applied Physics Letters, 2008. 92(15).
    [41]Buschow, K.H.J. and F.R. Boer, Physics of magnetism and magnetic materials. Vol. 7. 2003: Springer.
    [42]Shi, D., Functional thin films and functional materials: new concepts and technologies. Vol. 58. 2003: 清华大学出版社有限公司.
    [43]Burfoot, J.C. and G.W. Taylor, Polar dielectrics and their applications. 2022: Univ of California Press.
    [44]Kao, K.C., Dielectric phenomena in solids. 2004: Elsevier.
    [45]Barsoukov, E. and J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. 2018: John Wiley & Sons.
    [46]Curie, P., Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique. J. Phys. Theor. Appl., 1894. 3(1): p. 393-415.
    [47]Landau, L.D., J.S. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of continuous media. Vol. 8. 2013: elsevier.
    [48]Astrov, D., The magnetoelectric effect in antiferromagnetics. Sov. Phys. JETP, 1960. 11(3): p. 708-709.
    [49]Rado, G. and V. Folen, Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains. Physical review letters, 1961. 7(8): p. 310.
    [50]Fiebig, M., Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics, 2005. 38(8): p. R123.
    [51]Naifar, S., S. Bradai, C. Viehweger, and O. Kanoun, Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation. Measurement, 2017. 106: p. 251-263.
    [52]Brown Jr, W., R. Hornreich, and S. Shtrikman, Upper bound on the magnetoelectric susceptibility. Physical Review, 1968. 168(2): p. 574.
    [53]Wadhawan, V., Introduction to ferroic materials. 2000: CRC press.
    [54]Hill, N.A., Why are there so few magnetic ferroelectrics? 2000, ACS Publications. p. 6694-6709.
    [55]Ortega, N., A. Kumar, J. Scott, and R.S. Katiyar, Multifunctional magnetoelectric materials for device applications. Journal of Physics: Condensed Matter, 2015. 27(50): p. 504002.
    [56]Bertaut, E. and M. Mercier, Structure magnetique de MnYO3. Physics Letters, 1963. 5(1).
    [57]Kimura, T., T. Goto, H. Shintani, K. Ishizaka, T.-h. Arima, and Y. Tokura, Magnetic control of ferroelectric polarization. nature, 2003. 426(6962): p. 55-58.
    [58]Tellegen, B.D., The gyrator, a new electric network element. Philips Res. Rep, 1948. 3(2): p. 81-101.
    [59]Van Suchtelen, J., Product properties: a new application of composite materials. Phillips Research Reports, 1972. 27: p. 28-37.
    [60]Van Run, A., D. Terrell, and J. Scholing, An in situ grown eutectic magnetoelectric composite material: part 2 physical properties. Journal of Materials Science, 1974. 9: p. 1710-1714.
    [61]Fiorido, T., J. Galineau, V. Salles, L. Seveyrat, F. Belhora, P.-J. Cottinet, L. Hu, Y. Liu, B. Guiffard, and A. Bogner-Van De Moortele, Bifunctional organic/inorganic nanocomposites for energy harvesting, actuation and magnetic sensing applications. Sensors and Actuators A: Physical, 2014. 211: p. 105-114.
    [62]Nan, C.-W., M. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of Applied Physics, 2008. 103(3).
    [63]Egerton, L. and D.M. Dillon, Piezoelectric and dielectric properties of ceramics in the system potassium—sodium niobate. Journal of the American Ceramic Society, 1959. 42(9): p. 438-442.
    [64]Safari, A. and M. Abazari, Lead-free piezoelectric ceramics and thin films. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2010. 57(10): p. 2165-2176.
    [65]Ahtee, M. and A. Hewat, Structural phase transitions in sodium–potassium niobate solid solutions by neutron powder diffraction. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1978. 34(2): p. 309-317.
    [66]Tennery, V.J. and K.W. Hang, Thermal and X‐Ray diffraction studies of the NaNbO3–KNbO3 system. Journal of Applied Physics, 1968. 39(10): p. 4749-4753.
    [67]Wang, K. and J.-F. Li, (K, Na) NbO 3-based lead-free piezoceramics: Phase transition, sintering and property enhancement. Journal of Advanced Ceramics, 2012. 1: p. 24-37.
    [68]Kim, D.J., M.H. Lee, and T.K. Song, Comparison of multi-valent manganese oxides (Mn4+, Mn3+, and Mn2+) doping in BiFeO3-BaTiO3 piezoelectric ceramics. Journal of the European Ceramic Society, 2019. 39(15): p. 4697-4704.
    [69]Mandal, S.K., S. Singh, P. Dey, J.N. Roy, P.R. Mandal, and T.K. Nath, Temperature and frequency dependence of AC electrical properties of Zn and Ni doped CoFe2O4 nanocrystals. Philosophical Magazine, 2017. 97(19): p. 1628-1645.
    [70]Pan, Q. and B. Chu, Enhanced magnetoelectric response in bismuth-deficient BiFeO3-BaTiO3 ceramics. Journal of Applied Physics, 2019. 125(15).
    [71]Chen, J., J. Cheng, J. Guo, Z. Cheng, J. Wang, H. Liu, and S. Zhang, Excellent thermal stability and aging behaviors in BiFeO3‐BaTiO3 piezoelectric ceramics with rhombohedral phase. Journal of the American Ceramic Society, 2019. 103(1): p. 374-381.
    [72]Buttlar, T., T. Walther, K. Dörr, and S.G. Ebbinghaus, Preparation and Magnetoelectric Behavior of Ni/BaTiO3 Heterostructures with 0‐3 Connectivity. physica status solidi (b), 2020. 257(7).
    [73]Mandal, S.K., S. Singh, P. Dey, J.N. Roy, P.R. Mandal, and T.K. Nath, Temperature and frequency dependence of AC electrical properties of Zn and Ni doped CoFe2O4 nanocrystals. Philosophical Magazine, 2017. 97(19): p. 1628-1645.
    [74]Yang, H., G. Zhang, and Y. Lin, Enhanced electrical properties and observation of magnetoelectric effect in the BiFeO3 –BaTiO3 /CoFe2O4 laminate composites. Materials Letters, 2016. 164: p. 388-392.
    [75]Kharat, S.P., S.K. Gaikwad, B.G. Baraskar, D. Das, R.C. Kambale, Y.D. Kolekar, and C.V. Ramana, Enhanced magnetoelectric effect in Lead-Free piezoelectric BaZr0.2Ti0.8O3 − 0.5 Ba0.7Ca0.3TiO3 and Fe-rich magnetostrictive Co0.8Fe2.2-xDyxO4 nanocomposites for energy harvesting applications. Materials Science and Engineering: B, 2023. 291.
    [76]Wang, N., X. Luo, L. Han, Z. Zhang, R. Zhang, H. Olin, and Y. Yang, Structure, Performance, and Application of BiFeO(3) Nanomaterials. Nanomicro Lett, 2020. 12(1): p. 81.
    [77]Liu, X.h., Z. Xu, X.y. Wei, Z.h. Dai, and X. Yao, Ferroelectric, ferromagnetic, and magnetoelectric characteristics of 0.9 (0.7 BiFeO3–0.3 BaTiO3)–0.1 CoFe2O4 ceramic composite. Journal of the American Ceramic Society, 2010. 93(10): p. 2975-2977.
    [78]Wei, Y., X. Wang, J. Zhu, X. Wang, and J. Jia, Dielectric, ferroelectric, and piezoelectric properties of BiFeO3–BaTiO3 ceramics. Journal of the American Ceramic Society, 2013. 96(10): p. 3163-3168.
    [79]Zhou, S.D., Y. Li, H. Wu, L. Zhu, and Y.G. Wang, Optimization of room temperature multiferroic properties and magnetoelectric coupling effect in MnO2 doped BiFeO3−Bi0.5K0.5TiO3 ceramics. Journal of Magnetism and Magnetic Materials, 2019. 476: p. 472-477.
    [80]Sharma, S., H. Sharma, S. Thakur, J. Shah, R.K. Kotnala, and N.S. Negi, Structural, magnetic, magneto-dielectric and magneto-electric properties of (1-x) Ba0.85Ca0.15Ti0.90Zr0.10O3 – (x) CoFe2O4 lead-free multiferroic composites sintered at higher temperature. Journal of Magnetism and Magnetic Materials, 2021. 538.
    [81]Lekha, C.S.C., A.S. Kumar, S. Vivek, K.V. Saravanan, M.R. Anantharaman, K.P. Surendran, K. Nandakumar, and S.S. Nair, Room temperature magnetoelectric properties of lead-free alkaline niobate based particulate composites. Ceramics International, 2019. 45(7): p. 8115-8122.
    [82]Zhang, J., X. Chen, X. Wang, C. Fang, and G.J. Weng, Magnetic, mechanical, electrical properties and coupling effects of particle reinforced piezoelectric polymer matrix composites. Composite Structures, 2023. 304.
    [83]Qiu, J., Y. Wen, P. Li, and H. Chen, The giant magnetoelectric effect in Fe73.5Cu1Nb3Si13.5B9/PZT thick film composites. Journal of Applied Physics, 2015. 117(17).
    [84]Augustine, P., N. Yerol, N. Kalarikkal, B. Raneesh, M.T. Rahul, and S.K. Chacko, Room temperature multiferroic properties of BiFeO3–MnFe2O4 nanocomposites. Ceramics International, 2021. 47(11): p. 15267-15276.
    [85]Woldu, T., B. Raneesh, M.V.R. Reddy, and N. Kalarikkal, Grain size dependent magnetoelectric coupling of BaTiO3 nanoparticles. RSC Advances, 2016. 6(10): p. 7886-7892.
    [86]Yang, H., J. Zhang, Y. Lin, and T. Wang, High Curie temperature and enhanced magnetoelectric properties of the laminated Li(0.058)(Na(0.535)K(0.48))(0.942)NbO(3)/Co(0.6) Zn(0.4)Fe(1.7)Mn(0.3)O(4) composites. Sci Rep, 2017. 7: p. 44855.
    [87]Gaikwad, A.S., R.H. Kadam, S.E. Shirsath, S.R. Wadgane, J. Shah, R.K. Kotnala, and A.B. Kadam, Surprisingly high magneto-electric coupling in cubic Co0.7Fe2.3O4-SrTiO3 nano-composites. Journal of Alloys and Compounds, 2019. 773: p. 564-570.
    [88]Wang, D., G. Wang, S. Murakami, Z. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao, and I.M. Reaney, BiFeO3-BaTiO3: A new generation of lead-free electroceramics. Journal of Advanced Dielectrics, 2019. 08(06).

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE