| 研究生: |
許銘家 Hsu, Ming-Chia |
|---|---|
| 論文名稱: |
鎳基690合金於低溫高速荷載下之動態塑變行為與顯微結構分析 Dynamic Plastic Deformation Behaviour and Microstructural Characteristics of Inconel 690 Alloy Subjected to Low Temperature and High Strain Rate Loading Conditions |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 霍普金森桿 、Inconel 690超合金 、低溫 、應變速率 、絕熱剪切帶 、差排 |
| 外文關鍵詞: | split-Hopkinson bar, Inconel 690 super alloy, cryogenic temperature, strain rate, adiabatic band, dislocation |
| 相關次數: | 點閱:126 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是使用霍普金森高速撞擊試驗機及低溫裝置,於不同溫度和高應變速率荷載下測試Inconel 690合金之塑性變形行為下的機械性質及微觀結構變化。實驗溫度分別為-150℃、0℃、25℃;應變速率為2000 /s、4000 /s和6000 /s,以了解溫度及應變速率對材料塑變行為及微觀結構之影響。
實驗結果顯示,溫度和應變速率對Inconel 690合金之機械性質影響甚鉅。在相同溫度條件下,其塑流應力值、加工硬化率及應變速率敏感性係數均會隨應變速率之增加而上升,而熱活化體積則會下降。相反地,在相同應變速率條件下,其塑流應力值、加工硬化率與應變速率敏感性係數則會隨溫度之增加而下降,而熱活化體積則會上升。此外,可以藉由Zerilli-Armstrong構成方程式,來精確的預測此合金在不同溫度及應變速率下的塑變行為。
在微觀方面,由光學顯微鏡之觀測可知Inconel 690合金中有絕熱剪切帶形成及晶粒組織形貌的改變,兩者皆受溫度與應變速率的影響;而剪切帶中之裂縫生成與結合,為導致材料發生破壞的主要原因。在掃描式電子顯微鏡分析下,破壞形貌中可發現韌窩組織,表示Inconel 690合金屬於延性破壞模式,且其韌窩組織隨著溫度和應變速率的增加而變得較密且深。而在穿透式電子顯微鏡下則可觀測到差排密度隨著應變速率上升而增加,且可發現滑移帶的產生。最後結合巨觀與微觀結果證明了差排密度、塑流應力值、應變速率敏感性係數及熱活化體積有重要的相關性。
This study uses a split-Hopkinson bar and cryogenic devices to investigate the impact deformation behavior, fracture response and dislocation substructure of Inconel 690 super alloy at different temperatures of 25℃, 0℃and -150℃ under strain rates of 2000 /s, 4000 /s and 6000 /s, respectively.
The experimental results indicate that the mechanical properties are related to temperatureandstrain rate. At a constant temperature, plastic stress, work hardening, strain rate sensitivity all increase with the increasing strain rate, while the thermal activation volume decreases. However, at a constant strain rate, plastic stress, work hardening rate and strain rate sensitivity decrease with increasing temperature, while the thermal activation volume increases. In addation, the observed impact deformation behavior of this alloy under current testing conditions can be described by the Zerilli-Armstrong equation.
Optical microstructural observations reveal that the formation of adiabatic shear band and morphology of deformed grain of Inconel 690 super alloy both affected by temperature and strain rate. The SEM fracture analysis results indicate that the Inconel 690 specimens fail predominantly as the result of intensive localized shearing. The fracture surfaces of the deformed specimens are characterised by a dimple structure. The density of dimples increases with increasing strain rate and temperature.Transmission electron microscopy (TEM) observations show that the dislocation density increases with increasing strain rate, but decreases with increasing temperature.The relationship between the dislocation density and flow stress can be described by the Bailey-Hirsch type relation. Finally, the flow stress, strain rate sensitivity and thermal activation volume are related to the observeddislocation substructure.
1. F. G. Hodge, "The history of solid-solution-strengthened Ni alloys for aqueous corrosion service". JOM Journal of the Minerals, Metals and Materials Society, 2006. 58(9): p. 28-31.
2. K. Yamaoka, "Outline of IJnit-1 Steam Generator Replacement at Ikata Nuclear Power Station". 1999.
3. I. Goldberg, M. Mitchell, A. Murphy, R. Goldfarb and R. Loughran, "Magnetic Susceptibility of Inconel Alloys 718, 625, and 600 at Cryogenic Temperatures". Advances in Cryogenic Engineering: Materials., 1989. 36: p. 755-762.
4. H. Ledbetter, "Temperature behaviour of Young's moduli of forty engineering alloys". Cryogenics, 1982. 22(12): p. 653-656.
5. E. J. Jenko and S. Mohammed, "Nozzle tip for high melt pressure applications". 2009, Google Patents.
6. A. Brighenti, "Parametric analysis of the configuration of autonomous underwater vehicles". Oceanic Engineering, IEEE Journal of, 1990. 15(3): p. 179-188.
7. J. Calvo and K. Hannemann, "Analysis of the Heat Transfer in Liquid Rocket Engine Cooling Channels". New Results in Numerical and Experimental Fluid Mechanics VII, 2010: p. 441-448.
8. S. H. Brown, E. B. White, M. Pechulis and R. Carman, "Integrated liquid discharge system for waste disposal on future Surface combatants". Naval engineers journal, 1999. 111(3): p. 285-291.
9. H. Kolsky, "An investigation of the mechanical properties of materials at very high rates of loading". Proceedings of the Physical Society. Section B, 1949. 62: p. 676.
10. B. Butcher and C. Karnes, "Strain‐Rate Effects in Metals". Journal of Applied Physics, 1966. 37(1): p. 402-411.
11. F. E. Hauser, "Techniques for measuring stress-strain relations at high strain rates". Experimental Mechanics, 1966. 6(8): p. 395-402.
12. G. R. Johnson and W. H. Cook. "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures". 1983: The Hague, Netherlands: International Ballistics Committee.
13. J. R. Davis, "Nickel, cobalt, and their alloys". Vol. 8. 2000: Asm Intl. 362-370
14. 陳永璋, "鎳基超合金之材料相關知識". 銲接園地, 頁, 2000: p. 31-40.
15. 陳永璋、陳建銘, "鎳基合金之特性與其銲接方法". 銲接園地, 頁, 2000: p. 13-26.
16. R. E. Avery and D. Parsons, "Welding stainless and 9% nickel steel cryogenic vessels". Welding Journal-Including Welding Research Supplement, 1995. 74(11): p. 45-50.
17. I. Huntington Alloys, "Inconel Alloy 690". 1985.
18. J. A. Lee, J. H. Lee, J. J. Kim and Y. S. Chai, "Effects of heat treatment condition on the microstructure evolution of Inconel 690". Key Engineering Materials, 2005. 297: p. 458-462.
19. J. Kai, G. Yu, C. Tsai, M. Liu and S. Yao, "The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690". Metallurgical and Materials Transactions A, 1989. 20(10): p. 2057-2067.
20. D. Curran, L. Seaman and D. Shockey, "Linking dynamic fracture to microstructural processes". Shock waves and high-strain-rate phenomena in metals, 1981: p. 129-167.
21. U. Lindholm, "Measurement of Mechanical Properties, Techniques of Metals Research, Vol. 5, Part I, edited by RF Bunshah". 1971, Interscience Publishers, Inc., New York. p. 199-271.
22. U. Lindholm and L. Yeakley, "High strain-rate testing: tension and compression". Experimental Mechanics, 1968. 8(1): p. 1-9.
23. W. S. Lee and C. F. Lin, "Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures". Materials Science and Engineering: A, 1998. 241(1): p. 48-59.
24. J. Campbell, "Dynamic plasticity: macroscopic and microscopic aspects". Materials Science and Engineering, 1973. 12(1): p. 3-21.
25. D. Klahn, A. Mukherjee and J. Dorn, "Proceedings of the 2nd International Conference on the Strength of Metals and Alloys". Vol. III, ASM, 1970: p. 951.
26. J. Campbell and W. Ferguson, "The temperature and strain-rate dependence of the shear strength of mild steel". Philosophical Magazine, 1970. 21(169): p. 63-82.
27. A. Seeger, "Dislocations and mechanical properties of crystals". Wiley, New York, 1957: p. 243.
28. W. Ferguson, A. Kumar and J. Dorn, "Dislocation damping in aluminum at high strain rates". Journal of Applied Physics, 1967. 38(4): p. 1863-1869.
29. B. JD Campbell and A. Dowling, "The behaviour of materials subjected to dynamic incremental shear loading". Journal of the Mechanics and Physics of Solids, 1970. 18(1): p. 43-63.
30. Y. Bai and B. Dodd, "Adiabatic shear localization: occurrence, theories and applications". Vol. 2. 1992: Pergamon Press Oxford,, UK.
31. Z. Gronostajski, "The constitutive equations for FEM analysis". Journal of Materials Processing Technology, 2000. 106(1): p. 40-44.
32. P. Ludwik, "Elemente der technologischen Mechanik". 1909: Springer.
33. L. E. Malvern, B. U. D. o. A. Mathematics, U. S. O. o. N. Research and U. S. N. D. B. o. Ships, "The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect". 1949, Division of Applied Mathematics, Brown.
34. T. Vinh, M. Afzali and A. Roche, "Fast fracture of some usual metals at combined high strain and high strain rate". Mechanical Behavior of Materials, 1980: p. 633-642.
35. J. Duffy, "Workshop on Shear Localization". 1981: p. 19-29.
36. H. Kobayashi and B. Dodd, "A numerical analysis for the formation of adiabatic shear bands including void nucleation and growth". International journal of impact engineering, 1989. 8(1): p. 1-13.
37. H. Kobayashi and B. Dodd, "Formation of adiabatic shear bands in steel and titanium twisted at dynamic rates". J. Jpn. Soc. Technol. Plast., 1988. 29(334): p. 1152-1158.
38. F. J. Zerilli and R. W. Armstrong, "Dislocation‐mechanics‐based constitutive relations for material dynamics calculations". Journal of Applied Physics, 1987. 61(5): p. 1816-1825.
39. F. Zerilli and R. Armstrong, "The effect of dislocation drag on the stress-strain behavior of FCC metals". Acta metallurgica et materialia, 1992. 40(8): p. 1803-1808.
40. F. J. Zerilli and R. W. Armstrong, "Constitutive equation for hcp metals and high strength alloy steels". High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials, 1995: p. 121-126.
41. L. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. Staudhammer, "A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study". Journal of Materials Processing Technology, 2007. 182(1): p. 319-326.
42. D. Umbrello, R. M’saoubi and J. Outeiro, "The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel". International Journal of Machine Tools and Manufacture, 2007. 47(3): p. 462-470.
43. U. Andrade, M. Meyers and A. H. Chokshi, "Constitutive description of work-and shock-hardened copper". Scripta Metallurgica et Materialia;(United States), 1994. 30(7).
44. L. Shi and D. Northwood, "The mechanical behavior of an AISI type 310 stainless steel". Acta metallurgica et materialia, 1995. 43(2): p. 453-460.
45. W. S. Lee, C. Y. Liu and T. N. Sun, "Dynamic impact response and microstructural evolution of inconel 690 superalloy at elevated temperatures". International journal of impact engineering, 2005. 32(1-4): p. 210-223.
46. W. S. Lee and C. Y. Liu, "Comparison of dynamic compressive flow behavior of mild and medium steels over wide temperature range". Metallurgical and Materials Transactions A, 2005. 36(11): p. 3175-3186.
47. M. Backman, S. Schulz, J. Schulz and J. Pringle, "Scaling rules for adiabatic shear". Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena (eds. LE Murr, KP Staudhammer and MA Meyers) pp, 1986: p. 675-688.
48. R. Ham, "The determination of dislocation densities in thin films". Philosophical Magazine, 1961. 6(69): p. 1183-1184.
49. Y. Tomota, P. Lukas, S. Harjo, J. Park, N. Tsuchida and D. Neov, "In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation". Acta materialia, 2003. 51(3): p. 819-830.
50. J. J. Marra, "Relationship of grain boundary structure and mechanical properties of Inconel 690". 2009, DTIC Document.
51. M. K. Lim, S. D. Oh and Y. Z. Lee, "Friction and wear of Inconel 690 and Inconel 600 for steam generator tube in room temperature water". Nuclear engineering and design, 2003. 226(2): p. 97-105.
52. P. Trivedi, D. P. Field and H. Weiland, "Alloying effects on dislocation substructure evolution of aluminum alloys". International Journal of Plasticity, 2004. 20(3): p. 459-476.