簡易檢索 / 詳目顯示

研究生: 林士琦
Lin, Shih-Chi
論文名稱: 以第一原理計算研究MAPbBr3之電域調變光學性質
Study of the domain modulated optical properties of MAPbBr3 based on First-Principles Calculations
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 126
中文關鍵詞: MAPbBr3有機鹵素鈣鈦礦材料電域調變
外文關鍵詞: methylammonium lead tribromide(MAPbBr3), organometal halide perovskite, domain modulated
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MAPbBr3屬於有機鹵素鈣鈦礦材料,其具有良好的光學表現,故多數應用集中於光電元件,例如電光調變器。其中電光調變器(Electro-Optic Modulator, EOM)的工作原理是基於電光效應(Electro-Optic Effect),這是一種材料在電場作用下其折射率生變化的現象。在實際應用中,電光調變器通常被用於光纖通信系統,用來對傳輸的光信號進行調控,從而提高數據傳輸速率和質量。此外,MAPbBr3這類的鐵電材料可以透過外加電場影響材料內部的電域形式,意即,外加電場可以控制材料內部屬於單一電域或者(有電域壁存在的)多電域形式,而不同的電域形式將會影響系統內部的光路表現。本研究將研究預期透過影響光路表現達到相位調變器的效果,模擬分成兩步驟:第一原理計算:計算材料光學性質,以及COMSOL Multiphysics:模擬單一電域系統中,無折射率差異(無相位調變)的電域中之光路情形;以及多電域系統中,相鄰電域存在折射率差異(有相位調變)導致光路改變的情形。
    本研究成功以COMSOL Multiphysics歸納出具穩定且明顯的折射角度變化的體系,包含合適的入射波長以及入射角度,以及不同界面類型對折射情形的影響。

    The refraction behavior of incident beam of different wavelengths passing through various DW interfaces at 50 K, 150 K, 200 K, 350 K were simulated via COMSOL Multiphysics. It is anticipated that light paths with no deflection (single domain) or with large angle deflection (multi-domain) can be used to describe the changes in domain distribution under the influence of an external electric field, and further applied to electro-optic modulator applications. This research successfully used COMSOL Multiphysics to establish a system with stable and significant refraction angle variations. This includes identifying suitable incident wavelengths and angles, as well as understanding how different interface types affect the refraction behavior.

    摘要 I Abstract II 致謝 XXIV 目錄 XXV 表目錄 XXVIII 圖目錄 XXX 第一章 緒論 1 第二章 文獻回顧 2 2.1 鐵電材料的特性及應用 2 2.1.1 鐵電效應 2 2.1.2電滯曲線 3 2.1.3 鐵電材料應用 4 2.2有機鈣鈦礦結構的特性及應用 5 2.2.1 結構與相轉變 5 2.2.2 電域壁結構 6 2.2.3 電光效應(electro-optic effect) 8 2.2.4 Kerr effect 10 2.2.5 Phase field method 12 第三章 模擬理論基礎回顧 15 3.1 第一原理計算 15 3.1.1 理論密度泛涵 16 3.1.2 Kohn-Sham定理 17 3.1.3交換關聯能 18 3.1.4 贗勢能 19 3.1.5 週期性邊界條件 20 3.1.6 Van der Waals force修正 21 3.2 分子動力學計算 22 3.2.1 第一原理-分子動力學計算 23 3.2.2 Verlet演算法 24 3.2.3 系綜 26 3.2.4 Nose-Hoover thermostat 26 3.3 折射率計算之基本原理 26 3.3.1 VASP計算之介電常數 27 3.3.2 Lorentz model 27 3.3.3 介電常數轉換之折射率 29 第四章 模擬設計 30 4.1 計算模擬實驗設計 30 4.1.1 建立模型 30 4.1.2 結構優化計算 31 4.1.3 極化量及極化方向計算 34 4.2 COMSOL模擬設置 35 4.2.1 電域壁系統建立及定義 35 4.2.2 單一及多電域系統 39 第五章 結果與討論 41 5.1 結構優化計算 41 5.1.1 0K結構優化 41 5.1.2 50 K, 150 K, 200 K, 350 K結構優化 43 5.2 折射率計算 50 5.2 COMSOL模擬結果 56 5.3.1 90度多電域壁系統 56 5.3.2 180度多電域壁系統 71 第六章 結論 81 第七章 參考文獻 82 第八章 附錄 89

    1.Bednyakov, P.S., Sturman, B.I., Sluka, T. et al. “Physics and applications of charged domain walls.” npj Comput Mater 4, 65 (2018).
    2.Crassous, A., Sluka, T., Tagantsev, A. et al. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nature Nanotech 10, 614–618 (2015).
    3.R. Wang, M. Mujahid, Y. Duan, Z.-K. Wang, J. Xue, Y. Yang, “A Review of Perovskites Solar Cell Stability.” Advanced Functional Materials 2019, 1808843.
    4.A. Poglitsch; D. Weber, “Dynamic disorder in methylammonium trihalogenoplumbates (II) observed by millimeter‐wave spectroscopy”, J. Chem. Phys. 87, 6373–6378 (1987)
    5.Lan Chen, Charles Paillard , Hong Jian Zhao, Jorge Íñiguez, Yurong Yang1, and Laurent Bellaiche, “Tailoring properties of hybrid perovskites by domain-width engineering with charged walls”, npj Computational Materials, 2018, 4 (1), pp.75.
    6.Taame Abraha Berhe et al., “Organometal Halide Perovskite Solar Cells: Degradation and Stability”, Energy Environ. Sci., 2016, 9, 323-356
    7.Martin A Green, “Third generation photovoltaics: solar cells for 2020 and beyond”, Physica E: Low-dimensional Systems and Nanostructures, Volume 14, Issues 1–2, April 2002, Pages 65-70
    8.Shi Liu, Fan Zheng, Nathan Z. Koocher, Hiroyuki Takenaka, Fenggong Wang, and Andrew M. Rappe, “Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites”, J. Phys. Chem. Lett. 2015, 6, 693−699
    9.Wang KH, Li LC, Shellaiah M, Wen Sun K., “ Structural and Photophysical Properties of Methylammonium Lead Tribromide (MAPbBr3) Single Crystals.” Sci Rep. 2017 Oct 20;7(1):13643. doi: 10.1038/s41598-017-13571-1. PMID: 29057892; PMCID: PMC5651898.
    10.Edoardo Mosconi, Anna Amat, Md. K. Nazeeruddin, Michael Grätzel, and Filippo De Angelis, “First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications”, J. Phys. Chem. C 2013, 117, 27, 13902–13913
    11.Cheng Chen, Xiangmin Hu, Wengao Lu, Shuai Chang, Lijie Shi, Liang Li, Haizheng Zhong and Jun-Bo Han, “Elucidating the phase transitions and temperature-dependent photoluminescence of MAPbBr3 single crystal”, 2018 J. Phys. D: Appl. Phys. 51 045105
    12.Tingting Yin, Yanan Fang, Xiaofeng Fan, Bangmin Zhang, Jer-Lai Kuo, Timothy J. White, Gan Moog Chow, Jiaxu Yan and Ze Xiang Shen, “Hydrogen-Bonding Evolution during the Polymorphic Transformations in CH3NH3PbBr3: Experiment and Theory”, Chem. Mater. 2017, 29, 5974−5981
    13.Carlos A. Lopez et al., “Elucidating the Methylammonium (MA) Conformation in MAPbBr3 Perovskite with Application in Solar Cells”, Inorg. Chem. 2017, 56, 14214-14219
    14.H. Mashiyama ,Y. Kawamura,H. Kasano,T. Asahi,Y. Noda &H. Kimura, “Disordered Configuration of Methylammonium of CH3NH3PbBr3 Determined by Single Crystal Neutron Diffractometry”, Ferroelectrics Volume 348, 2007 - Issue 1
    15.Akun Liang, Robin Turnbull, Catalin Popescu, Ismael Fernandez-Guillen, Rafael Abargues, Pablo P. Boix, and Daniel Errandonea, “Pressure-Induced Phase Transition versus Amorphization in Hybrid Methylammonium Lead Bromide Perovskite”, J. Phys. Chem. C 2023, 127, 26, 12821–12826
    16.Maldonado, Theresa A. "Electro-optic modulators." Handbook of optics 2 (1995): 13-11.
    17.Hossain, Md Moazzem. "First-principles study on the structural, elastic, electronic and optical properties of LiNbO3." Heliyon 5.4 (2019).
    18.COMSOL, "Mach–Zehnder Modulator," In Application Libraries > Wave Optics Module > Modulators and Switches, COMSOL Inc, 2023. [Online]. Available: https://doc.comsol.com/5.3/docserver/#!/com.comsol.help.models.woptics.mach_zehnder_modulator/mach_zehnder_modulator.html?highlight=modulator
    19.Montasir Qasymeh, Michael Cada, and Sergey A. Ponomarenko, “Quadratic Electro-Optic Kerr Effect:Applications to Photonic Devices”, IEEE Journal of Quantum Electronics ( Volume: 44, Issue: 8, August 2008)
    20.Muhammad Mustafa, “KERR EFFECT EXPERIMENTATION KERR EFFECT”, Department of Physics UET, Lahore 2022-Ph.D-Phy-0
    21.Bo-Kuai Lai, I. Ponomareva, I. I. Naumov, I. Kornev, Huaxiang Fu, L. Bellaiche, and G. J. Salamo, “Electric-Field-Induced Domain Evolution in Ferroelectric Ultrathin Films”, Phys. Rev. Lett. 96, 137602
    22.Long-Qing Chen, “Phase-Field Method of Phase Transitions/Domain Structures in Ferroelectric Thin Films: A Review”, J. Am. Ceram. Soc., 91 [6] 1835–1844 (2008)
    23.G. Kresse av, J. Furthmiiller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Computational Materials Science 6 (1996) 15-50
    24.P. bulitinck, H. de Winter, W. Langenaeker, and J.P. Tollenare,Computational medicinal chemistry for drug discovery, CRC Press,2003
    25.W. Kohn, “Nobel Lecture: Electronic structure of matter—wave functions and density functionals”, Rev. Mod. Phys. 71, 1253 (1999)
    26.G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Phys. Rev. B 54, 11169 (1996)
    27.P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas”, Phys. Rev. 136, B864(1964)
    28.W. KOHN AND L. J. SHAM, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev. 140, A1133 (1965)
    29.A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A 38, 3098(1988)
    30.D. M. Ceperley and B. J. Alder, “Ground State of the Electron Gas by a Stochastic Method”, Phys. Rev. Lett. 45, 566 (1980)
    31.S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, ”Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study”, Phys. Rev. B 57, 1505 (1998)
    32.In-Ho Lee and Richard M. Martin, ”Applications of the generalized-gradient approximation to atoms, clusters, and solids”, Phys. Rev. B 56, 7197)1997)
    33.Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B Condens Matter. 1992 Sep 15;46(11):6671-6687. doi: 10.1103/physrevb.46.6671. PMID: 10002368.
    34.J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces”, Phys. Rev. Lett. 100, 136406 (2008). (PBEsol)
    35.G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method”, Phys. Rev. B 59, 1758(1999)
    36.David J. Liptrot and Philip P. Power, ”David J. Liptrot and Philip P. Power”, Nature Reviews Chemistry volume 1, Article number: 0004 (2017)
    37.F. LONDON, ”THE GENERAL THEORY OF MOLECULAR FORCES.”, Transaction of Faraday Society Volume 33, 1937
    38.Brandenburg, J. G., Hocheim, M., Bredow, T. & Grimme, S. Low-cost quantum chemical methods for noncovalent interactions. J. Phys. Chem. Lett. 5, 4275–4284 (2014)
    39.Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004).
    40.Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
    41.Stefan Grimme; Jens Antony; Stephan Ehrlich; Helge Krieg, ”A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu”, J. Chem. Phys. 132, 154104 (2010)
    42.Narasak Pandech, Thanundon Kongnok, Nirawith Palakawong, Sukit Limpijumnong, Walter R. L. Lambrecht, and Sirichok Jungthawan, “Effects of the van der Waals Interactions on Structural and Electronic Properties of CH3NH3(Pb,Sn)(I,Br,Cl)3 Halide Perovskites”, ACS Omega 2020, 5, 40, 25723–25732
    43.Iftimie R, Minary P, Tuckerman ME. Ab initio molecular dynamics: concepts, recent developments, and future trends. Proc Natl Acad Sci U S A. 2005 May 10;102(19):6654-9. doi: 10.1073/pnas.0500193102. Epub 2005 May 3. PMID: 15870204; PMCID: PMC1100773.
    44.M. BORN and R. OPPENHEIMER, “ON THE QUANTUM THEORY OF MOLECULES”, Annalen der PhysikVolume 389, Issue 20Jan 1927Pagesfmi, 457-552
    45.R. Car and M. Parrinello, “Unified Approach for Molecular Dynamics and Density-Functional Theory”, Phys. Rev. Lett. 55, 2471 – Published 25 November 1985
    46.Verlet, Loup. "Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules." Physical review 159.1 (1967): 98.
    47.William C Swope, Hans C. Andersen, Peter H. Berens, Hans C. Andersen, “A Computer-Simulation Method for the Calculation of Equilibrium-Constants for the Formation of Physical Clusters of Molecules—Application to Small Water Clusters”, January 1982 The Journal of Chemical Physics 76(1)
    48.Shuichi Nosé, “A unified formulation of the constant temperature molecular dynamics methods”, J. Chem. Phys. 81, 511–519 (1984)
    49.William G. Hoover, ” Canonical dynamics: Equilibrium phase-space distributions”, Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697.
    50.Yves Pomeau, Jarosław Piasecki, “The Langevin equationL'équation de Langevin“, Comptes Rendus Physique, Volume 18, Issues 9–10, November–December 2017, Pages 570-582
    51.Aditya Kavalur,Varun Guduguntla &Woo Kyun Kim, “Effects of Langevin friction and time steps in the molecular dynamics simulation of nanoindentation”, Molecular Simulation Volume 46, 2020 - Issue 12
    52.Krystyna Kolwas and Anastasiya Derkachova, “Impact of the Interband Transitions in Gold and Silver on the Dynamics of Propagating and Localized Surface Plasmons”, Nanomaterials (Basel). 2020 Jul; 10(7): 1411
    53.Pin Lyu, Randy Espinoza, and Son C. Nguyen, “Photocatalysis of Metallic Nanoparticles: Interband vs Intraband Induced Mechanisms”, J. Phys. Chem. C 2023, 127, 32, 15685–15698
    54.M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the projector-augmented wave methodology”, Phys. Rev. B 73, 045112 – Published 17 January 2006
    55.J. Tuhinsubhra, “The Lorentz Oscillator and its Applications”, https://www.academia.edu/38758569/The_Lorentz_Oscillator_and_its_Applications
    56.S. A. MAIER, Plasmonics: Fundamentals and Applications, New York, NY:Springer US(2007), doi:10.1007/0-387-37825-1
    57.Kurt E. Oughstun and Natalie A. Cartwright, "On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion," Opt. Express 11, 1541-1546 (2003)
    58.Bin Yang et al., “Real-Time Observation of Order-Disorder Transformation of Organic Cations Induced Phase Transition and Anomalous Photoluminescence in Hybrid Perovskites”, Adv. Mater. 2018, 30, 1705801
    59.Wang, KH., Li, LC., Shellaiah, M. et al., ”Structural and Photophysical Properties of Methylammonium Lead Tribromide (MAPbBr3) Single Crystals.”, Sci Rep 7, 13643 (2017).
    60.Federico Brivio, Jarvist Moore Frost, Jonathan Skelton et al, “Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal and cubic phases of methylammonium lead iodide”, PHYSICAL REVIEW B 92, 144308 (2015)
    61.Nicholas Ayers, Soumik Banerjee, and Samrat Choudhury, “Atomic structure and electronic properties of lead and tin based hybrid halide perovskite surface for photovoltaic applications”, Advances Volume 9, Issue 8 August 2019

    無法下載圖示 校內:2029-09-12公開
    校外:2029-09-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE