| 研究生: |
林宗漢 Lin, Zong-Han |
|---|---|
| 論文名稱: |
快速微流體紙基晶片系統應用於尿液中鈣離子之檢測 Rapid Microfluidic Paper-Based Chip System For The Detection Of Calcium Ions In Urine |
| 指導教授: |
傅龍明
Fu, Lung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 腎結石 、微流體紙基晶片 、鈣離子 、比色法 、紫尿酸胺 |
| 外文關鍵詞: | Kidney Stone, Microfluidic Chip System, Calcium Ion, Colorimetric, Murexide |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腎結石是一個全球性的問題,其患者的成長速度極為快速,在醫療方面已造成十 分沉重的負擔。會造成患者成長如此快速的原因之一是因為在結石初期的症狀並不明 顯,無症狀的病人常常忽略問題的嚴重性,許多患者因無病識感,最終導致病情惡化。 在判斷是否為腎結石病患的高風險族群當中,尿液中的鈣離子是極為重要的指標之一, 因為它會與草酸根離子或是磷酸根離子結合形成最常見的鈣質腎結石,因此若能縮短 檢測時間,提早發現異常,配合醫生建議,適時調整飲食及生活作息,就能保障自身 健康。
在本研究中,使用紫尿酸胺與鈣離子反應產生顏色變化的方式,搭配開發微流體 紙基系統的晶片結合垂直過濾的方式,對鈣離子進行比色法的檢測。藉由 RGB 數值 推導出鈣離子濃度。所提出的方法有效使用於鈣離子樣品檢測,濃度區間為 2.2 mg/dL 至 40 mg/dL。由實驗結果可知,使用所開發的微流體紙基晶片系統,應用於鈣離子檢 測中可得到線性度 R2 高達 0.99 以上,並與國立成功大學腎臟科合作,採集真實病患 檢體,比較紙基晶片系統與成大醫院的數值,在 28 個檢體個案中回收率平均可達 99%。 由此結果得出,本文所提出的鈣離子檢測系統不僅降低檢測成本、簡化製程步驟、操 作簡易,且為十分可靠的方法。
Kidney stones are a global problem, and their patients are growing at an extremely fast rate, causing a heavy burden on medical care. Among the high-risk groups to determine whether it is a kidney stone patient, calcium ion in urine is one of the extremely important indicators, because it combines with oxalate ion or phosphate ion to form the most common calcium kidney stones.
In this study, the colorimetric detection of calcium ions was carried out by using Murexide reacting with calcium ions to produce color changes, in combination with the development of a microfluidic paper-based system chip combined with vertical filtration. The calcium ion concentration is derived from the RGB values. The proposed method was effectively used for calcium ion sample detection in the concentration range from 2.2 mg/dL to 40 mg/dL. In cooperation with the NCKUH, actual patient samples were collected, and the paper-based chip system was compared with the values of NCKUH. According to the data of the chip system and the NCKUH, the recovery rate of the 28 specimens can reach an average of 99%. We also detect the calcium ion in artificial urine. The result of detection can reach an average of 101%. From the results, the calcium ion detection system in this paper not only reduces the detection cost, simplifies the process steps, and is easy to operate, but also a very reliable method.
[1] Gottlieb, M., Long, B., & Koyfman, A. (2018). The evaluation and management of urolithiasis in the ED: A review of the literature. The American Journal of Emergency Medicine, 36, 699-706.
[2] Nirumand, M. C., Hajialyani, M., Rahimi, R., Farzaei, M. H., Zingue, S., Nabavi, S. M., & Bishayee, A. (2018). Dietary plants for the prevention and management of kidney stones: preclinical and clinical evidence and molecular mechanisms. International Journal of Molecular Sciences, 19, 765.
[3] Liu, Y., Chen, Y., Liao, B., Luo, D., Wang, K., Li, H., & Zeng, G. (2018). Epidemiology of urolithiasis in Asia. Asian Journal of Urology, 5, 205-214.
[4] Wang, R. C. (2016). Managing urolithiasis. Annals of Emergency Medicine, 67, 449- 454.
[5] Alelign, T., & Petros, B. (2018). Kidney stone disease: an update on current concepts. Advances in Urology, 2018.
[6] Miller, N. L., & Lingeman, J. E. (2007). Management of Kidney Stones. British Medical Journal, 334, 468-472.
[7] Pozdzik, A., Maalouf, N., Letavernier, E., Brocheriou, I., Body, J.-J., Vervaet, B., Van Haute, C., Noels, J., Gadisseur, R., & Castiglione, V. (2019). Meeting report of the “Symposium on kidney stones and mineral metabolism: calcium kidney stones in 2017”. Journal of Nephrology, 32, 681-698.
[8] Sakhaee, K., Maalouf, N. M., & Sinnott, B. (2012). Kidney stones 2012:pathogenesis, diagnosis, and management. The Journal of Clinical Endocrinology & Metabolism, 97, 1847-1860.
[9] Moe, O. W. (2006). Kidney stones: pathophysiology and medical management. The Lancet, 367, 333-344.
[10] Feynman, R. (1993). Infinitesimal machinery. Journal of Microelectromechanical Systems, 2, 4-14.
[11] Feynman, R. P. (1992). There's plenty of room at the bottom [data storage]. Journal of Microelectromechanical Systems, 1, 60-66.
[12] Chin, C. D., Linder, V., & Sia, S. K. (2007). Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on a Chip, 7, 41-57.
[13] Nichols, J. H. (2020). Point-of-care testing. In Contemporary Practice in Clinical 48 Chemistry : Elsevier.
[14] Reyes, D. R., Iossifidis, D., Auroux, P.-A., & Manz, A. (2002). Micro total analysis
systems. 1. Introduction, theory, and technology. Analytical Chemistry, 74, 2623-2636.
[15] Zhu, H., Fohlerová, Z., Pekárek, J., Basova, E., & Neužil, P. (2020). Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosensors and Bioelectronics, 153,112041.
[16] Miled, A., & Greener, J. (2017). Recent advancements towards full-system microfluidics. Sensors, 17, 1707.
[17] Braga, F., Infusino, I., & Panteghini, M. (2015). Role and responsibilities of laboratory medicine specialists in the verification of metrological traceability of in vitro medical diagnostics. Journal of Medical Biochemistry, 34, 282.
[18] Zhou, W., Gao, X., Liu, D., & Chen, X. (2015). Gold nanoparticles for in vitro diagnostics. Chemical Reviews, 115, 10575-10636.
[19] Brisbane, W., Bailey, M. R., & Sorensen, M. D. (2016). An overview of kidney stone imaging techniques. Nature Reviews Urology, 13, 654-662.
[20] Renard-Penna, R., Martin, A., Conort, P., Mozer, P., & Grenier, P. (2015). Kidney stones and imaging: what can your radiologist do for you? World Journal of Urology, 33, 193- 202.
[21] Ziemba, J. B., & Matlaga, B. R. (2015). Guideline of guidelines: kidney stones. British Journal of Urology International, 116, 184-189.
[22] D’Addessi, A., Vittori, M., Racioppi, M., Pinto, F., Sacco, E., & Bassi, P. (2012). Complications of extracorporeal shock wave lithotripsy for urinary stones: to know and to manage them—a review. The Scientific World Journal, 2012.
[23] Worcester, E. M., & Coe, F. L. (2010). Calcium kidney stones. New England Journal of Medicine, 363, 954-963.
[24] Coe, F. L., Favus, M. J., Crockett, T., Strauss, A. L., Parks, J. H., Porat, A., Gantt, C. L., & Sherwood, L. M. (1982). Effects of low-calcium diet on urine calcium excretion, parathyroid function and serum 1, 25 (OH) 2D3 levels in patients with idiopathic hypercalciuria and in normal subjects. The American Journal of Medicine, 72, 25-32.
[25] Gul, Z., & Monga, M. (2014). Medical and dietary therapy for kidney stone prevention. Korean Journal of Urology, 55, 775-779.
[26] Willis, J. (1961). Determination of calcium and magnesium in urine by atomic absorption spectroscopy. Analytical Chemistry, 33, 556-559.
[27] Ankireddy, S. R., & Kim, J. (2018). Highly selective and sensitive detection of calcium (II) ions in human serum using novel fluorescent carbon dots. Sensors and Actuators B: Chemical, 255, 3425-3433.
[28] Kim, S., Park, J. W., Kim, D., Kim, D., Lee, I. H., & Jon, S. (2009). Bioinspired colorimetric detection of calcium (II) ions in serum using calsequestrin‐functionalized gold nanoparticles. Angewandte Chemie, 121, 4202-4205.
[29] Yu, B.-S., Yuan, Q.-G., Nie, L.-H., & Yao, S.-Z. (2001). Ion chromatographic determination of calcium and magnesium cations in human saliva and urine with a piezoelectric detector. Journal of Pharmaceutical and Biomedical Analysis, 25, 1027- 1032.
[30] Harnach, F., & Coolidge, T. B. (1963). Determination of ionized calcium in serum with murexide. Analytical Biochemistry, 6, 477-485.
[31] Lan, W.-J., Zou, X. U., Hamedi, M. M., Hu, J., Parolo, C., Maxwell, E. J., Bühlmann, P., & Whitesides, G. M. (2014). based potentiometric ion sensing. Analytical Chemistry, 86, 9548-9553.
[32] Shibata, H., Hiruta, Y., & Citterio, D. (2019). Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes. Analyst, 144, 1178-1186.
[33] Ghaderinezhad, F., Ceylan Koydemir, H., Tseng, D., Karinca, D., Liang, K., Ozcan, A., & Tasoglu, S. (2020). Sensing of electrolytes in urine using a miniaturized paper-based device. Scientific Reports, 10, 1-9.
[34] Nilghaz, A., Guan, L., Tan, W., & Shen, W. (2016). Advances of Paper-Based Microfluidics for Diagnostics The Original Motivation and Current Status. American Chemical Society Sensors, 1, 1382-1393.
[35] Cate, D. M., Adkins, J. A., Mettakoonpitak, J., & Henry, C. S. (2015). Recent developments in paper-based microfluidic devices. Analytical Chemistry, 87, 19-41.
[36] West, P. W. (1945). Selective spot test for copper. Industrial & Engineering Chemistry Analytical Edition, 17, 740-741.
[37] Comer, J. (1956). Semiquantitative specific test paper for glucose in urine. Analytical Chemistry, 28, 1748-1750.
[38] Carrell, C., Kava, A., Nguyen, M., Menger, R., Munshi, Z., Call, Z., Nussbaum, M., & Henry, C. (2019). Beyond the lateral flow assay: A review of paper-based microfluidics. Microelectronic Engineering, 206, 45-54.
[39] Martinez, A. W., Phillips, S. T., Butte, M. J., & Whitesides, G. M. (2007). Patterned paper as a platform for inexpensive, low‐volume, portable bioassays. Angewandte Chemie, 119, 1340-1342.
[40] Martinez, A. W., Phillips, S. T., Whitesides, G. M., & Carrilho, E. (2010). Diagnostics for the developing world: microfluidic paper-based analytical devices.
[41] Dungchai, W., Chailapakul, O., & Henry, C. S. (2009). Electrochemical detection for paper-based microfluidics. Analytical Chemistry, 81, 5821-5826.
[42] Carrilho, E., Phillips, S. T., Vella, S. J., Martinez, A. W., & Whitesides, G. M. (2009). Paper microzone plates. Analytical Chemistry, 81, 5990-5998.
[43] Yu, J., Ge, L., Huang, J., Wang, S., & Ge, S. (2011). Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab on a Chip, 11, 1286-1291.
[44] Pelton, R. (2009). Bioactive paper provides a low-cost platform for diagnostics. TrAC Trends in Analytical Chemistry, 28, 925-942.
[45] Hu, J., Wang, S., Wang, L., Li, F., Pingguan-Murphy, B., Lu, T. J., & Xu, F. (2014). Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics, 54, 585-597.
[46] Yetisen, A. K., Akram, M. S., & Lowe, C. R. (2013). based microfluidic point-of-care diagnostic devices. Lab on a Chip, 13, 2210-2251.
[47] Sharma, H., Nguyen, D., Chen, A., Lew, V., & Khine, M. (2011). Unconventional low- cost fabrication and patterning techniques for point of care diagnostics. Annals of Biomedical Engineering, 39, 1313-1327.
[48] Bruzewicz, D. A., Reches, M., & Whitesides, G. M. (2008). Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Analytical Chemistry, 80, 3387-3392.
[49] Spicar-Mihalic, P., Toley, B., Houghtaling, J., Liang, T., Yager, P., & Fu, E. (2013). CO2 laser cutting and ablative etching for the fabrication of paper-based devices. Journal of Micromechanics and Microengineering, 23, 067003.
[50] Abe, K., Suzuki, K., & Citterio, D. (2008). Inkjet-printed microfluidic multianalyte chemical sensing paper. Analytical Chemistry, 80, 6928-6934.
[51] Altundemir, S., Uguz, A., & Ulgen, K. (2017). A review on wax printed microfluidic paper-based devices for international health. Biomicrofluidics, 11, 041501.
[52] Lu, Y., Shi, W., Qin, J., & Lin, B. (2010). Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Analytical Chemistry, 82, 329-335.
[53] Washburn, E. W. (1921). The dynamics of capillary flow. Physical Review, 17, 273.
[54] Carrilho, E., Martinez, A. W., & Whitesides, G. M. (2009). Understanding wax printing:
a simple micropatterning process for paper-based microfluidics. Analytical Chemistry, 81, 7091-7095.
[55] Tenda, K., Ota, R., Yamada, K., Henares, T. G., Suzuki, K., & Citterio, D. (2016). High-resolution microfluidic paper-based analytical devices for sub-microliter sample analysis. Micromachines, 7, 80.
[56] Jeong, S.-G., Kim, J., Nam, J.-O., Song, Y. S., & Lee, C.-S. (2013). based analytical device for quantitative urinalysis. International Neurourology Journal, 17, 155.
[57] Martinez, A. W., Phillips, S. T., & Whitesides, G. M. (2008). Three-dimensional microfluidic devices fabricated in layered paper and tape. Proceedings of the National Academy of Sciences, 105, 19606-19611.
[58] Tseng, C.-C., Kung, C.-T., Chen, R.-F., Tsai, M.-H., Chao, H.-R., Wang, Y.-N., & Fu,
L.-M. (2021). Recent advances in microfluidic paper-based assay devices for diagnosis of human diseases using saliva, tears and sweat samples. Sensors and Actuators B: Chemical, 342, 130078.
[59] Yang, R.-J., Tseng, C.-C., Ju, W.-J., Fu, L.-M., & Syu, M.-P. (2018). Integrated microfluidic paper-based system for determination of whole blood albumin. Sensors and Actuators B: Chemical, 273, 1091-1097.
[60] Martinez, A. W., Phillips, S. T., & Whitesides, G. M. (2008). Three-dimensional microfluidic devices fabricated in layered paper and tape.Proceedings of the National Academy of Sciences,105, 19606-19611.
[61] Verma, M. S., Tsaloglou, M.-N., Sisley, T., Christodouleas, D., Chen, A., Milette, J., & Whitesides, G. M. (2018). Sliding-strip microfluidic device enables ELISA on paper. Biosensors and Bioelectronics, 99, 77-84.
[62] Lankelma, J., Nie, Z., Carrilho, E., & Whitesides, G. M. (2012). based analytical device for electrochemical flow-injection analysis of glucose in urine. Analytical Chemistry, 84, 4147-4152.
[63] Li, X., Tian, J., & Shen, W. (2010). Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose, 17, 649-659.
[64] Klasner, S. A., Price, A. K., Hoeman, K. W., Wilson, R. S., Bell, K. J., & Culbertson,
C. T. (2010). based microfluidic devices for analysis of clinically relevant analytes
present in urine and saliva. Analytical and Bioanalytical Chemistry, 397, 1821-1829.
[65] Dungchai, W., Chailapakul, O., & Henry, C. S. (2010). Use of multiple colorimetric indicators for paper-based microfluidic devices. Analytica Chimica Acta, 674, 227-233.
[66] Allen, P. B., Arshad, S. A., Li, B., Chen, X., & Ellington, A. D. (2012). DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform. Lab on a Chip, 12, 2951-2958.
[67] Hossain, S. Z., Luckham, R. E., McFadden, M. J., & Brennan, J. D. (2009). Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Analytical Chemistry, 81, 9055-9064.
[68] Wang, L., Chen, W., Xu, D., Shim, B. S., Zhu, Y., Sun, F., Liu, L., Peng, C., Jin, Z., &
Xu, C. (2009). Simple, rapid, sensitive, and versatile SWNT− paper sensor for
environmental toxin detection competitive with ELISA. Nano Letters, 9, 4147-4152.
[69] Liana, D. D., Raguse, B., Gooding, J. J., & Chow, E. (2012). Recent advances in paper- based sensors. Sensors, 12, 11505-11526.
[70] Chernov, V., Alander, J., & Bochko, V. (2015). Integer-based accurate conversion between RGB and HSV color spaces. Computers & Electrical Engineering, 46, 328- 337.
[71] Chernov, V., Alander, J., & Bochko, V. (2015). Integer-based accurate conversion between RGB and HSV color spaces. Computers & Electrical Engineering, 46, 328- 337.
[72] Saravanan, G., Yamuna, G., & Nandhini, S. (2016). Real time implementation of RGB to HSV/HSI/HSL and its reverse color space models. Paper presented at the 2016 International Conference on Communication and Signal Processing (ICCSP).
[73] Ye, J., Li, N., Lu, Y., Cheng, J., & Xu, Y. (2017). A portable urine analyzer based on colorimetric detection.Analytical Methods,9, 2464-2471.
[74] Morbioli, G. G., Mazzu-Nascimento, T., Stockton, A. M., & Carrilho, E. (2017).
Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)-A review. Analytica Chimica Acta, 970, 1-22.
[75] Salles, M., Meloni, G., De Araujo, W., & Paixão, T. (2014). Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach.
Analytical Methods, 6, 2047-2052.
[76] Fu, L.-M., Liu, C.-C., Yang, C.-E., Wang, Y.-N., & Ko, C.-H. (2019). A PET/paper chip platform for high resolution sulphur dioxide detection in foods. Food Chemistry, 286,316-321.
[77] Hong, T. F., Ju, W. J., Wu, M. C., Tai, C. H., Tsai, C. H., & Fu, L. M. (2010). Rapid
prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluidics and
Nanofluidics, 9, 1125-1133.
[78] Scarpa, A. (1972). Spectrophotometric measurement of calcium by murexide. In Methods in Enzymology, 24.
[79] Pollard, F., & Martin, J. (1956). The spectrophotometric determination of the alkaline - earth metals with murexide, eriochrome black T and with o cresolphthalein complexone. Analyst, 81, 348-353.
[80] Pohling, R. (2015). Chemische Reaktionen in der Wasseranalyse: Springer-Verlag.
[81] Burgot, J.-L. (2012). Complexometry III: Metal Cation Indicators and Types of EDTA Titrations. In Ionic Equilibria in Analytical Chemistry: Springer.
[82] Ostad, M. A., Hajinia, A., & Heidari, T. (2017). A novel direct and cost effective method for fabricating paper-based microfluidic device by commercial eye pencil and its application for determining simultaneous calcium and magnesium. Microchemical Journal, 133, 545-550.