| 研究生: |
劉任偉 Liu, Jen-Wei |
|---|---|
| 論文名稱: |
點雲分群與邊界提取辨識建物損傷及變形 PCD Clustering and Edge Extraction for Damage / Deformation Identifications of Structures |
| 指導教授: |
侯琮欽
Hou, Tsung-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 地面雷射掃描 、結構健康檢測 、點雲資料 、資料分群演算法 、最小二乘法 、邊界提取演算法 |
| 外文關鍵詞: | terrestrial laser scanner, structural health monitoring, data clustering algorithms, least mean square method, edge extraction algorithm |
| 相關次數: | 點閱:174 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結構物建造完畢後若缺乏週期性維護與檢測,當結構物或其構件有損傷或缺陷產生時,結構物的安全性及耐久性將受到影響,因此在土木工程領域中,對於結構物損傷及缺陷之探傷檢測乃為相當重要的一環。吾人透過對結構物進行定期檢測以辨識其損傷缺陷,並對損傷缺陷進行評估的過程稱為結構健康檢測(structural health monitoring, SHM)。近年來隨著光學感測技術的進步,雷射掃描(laser scanning)的發展已逐漸成熟,學界及業界已有許多專家、學者與工程師應用地面雷射掃描(terrestrial laser scanning, TLS)擷取結構物詳細且完整的外觀資訊(facade information),然掃描儀所擷取之資訊皆為大量且散亂之點雲資料(point cloud data, PCD)。點雲資料的後處理,包括資料擷取(acquisition)、資料結合(coupling)、及資料重建(reconstruction)等皆為目前以光學感測應用於結構健康檢測相關研究之主要發展方向。據此,本研究嘗試使用數種數據演算法對結構物與其構件之點雲資料進行後處理,以探討各類演算法對於不同結構物件點雲資料之適用性,以期使光學感測於結構健康檢測之應用提出些許貢獻。本研究核心主題有二:其一為使用資料分群演算法(data clustering algorithms)對結構表面材料破壞或劣化區域之點雲資料進行量化損傷辨識,具體包括模糊c均值法(Fuzzy c-means, FCM)、k均值法(k-means, KM)、減法聚類法(subtractive clustering method, SCM)以及具噪密度基礎分群法(density-based spatial clustering of applications with noise, DBSCAN),再依各演算法之分析結果提出較適用於結構表面損傷辨識之資料分群演算法;其二為整合邊界提取(edge extraction)演算法及最小二乘法(least mean square, LMS)對實尺寸鋼筋混凝土梁、版等構件進行變行曲線擬合,以期獲得物件之全域幾何變化,並與具較高量測精確度之線性可變差動變壓器(linera variable differential transformer, LVDT)所得到之結果進行比較,以探討其於單點精度之表現。由本研究之結果可得知,使用模糊c均值法對結構表面損傷之反射強度(reflection intensity)資料進行資料分群(data clustering)能夠獲得最佳辨識成果,所需計算資源亦較其他演算法少,執行快速;另外結合邊界提取演算法及最小二乘法所得之鋼筋混凝土構件變形資訊較不受構件表面平整度不佳的影響,經與LVDT之單點量測值比較,其分析結果相當準確,且使用點雲資料亦具全域量測優勢。
After the construction of the structure, the safety and durability of the structure may be affected by the damage or defects of the structure or its components due to the lack of periodic maintenance and monitoring. Therefore, detection of structural damage and defects is a very important part in civil engineering. The process of identification and assessment of structural damage and defects through the regular inspection is called structural health monitoring. In recent years, laser scanning technology has gradually become fully developed due to the progress of optical sensing technology, many experts, academics and engineers use terrestrial laser scanner to capture detailed and complete facade information of structures. There are two major topics in this study. First, applying data clustering algorithms to point cloud data to identify and quantify the material damage and deterioration of structural surface, then compare each result analyzed by algorithms to find the most suitable algorithm. The algorithms are fuzzy c-means, k-means, subtractive clustering method and density-based spatial clustering of applications with noise. Secondly, applying edge extraction algorithm and least mean square method to fit the overall deformed curves of components, then compare results with deflection obtained by LVDT. The results showed that applying fuzzy c-means to reflection intensity data can obtain the best identification result, and applying edge extraction algorithm and least mean square method to fit the deformed curve is pretty precise and can reduce the effect of surface roughness.
[1]. 王鵬圖(2016),「以空間點雲進行鋼筋混凝土梁構件之一維擬合」,國立成功大學土木工程研究所碩士論文。
[2]. 吳天佑(2016),「以空間點雲進行鋼筋混凝土版結構之二維擬合」,國立成功大學土木工程研究所碩士論文。
[3]. 侯琮欽、蔡家修、劉任偉(2016),「地面雷射掃描於震後災損勘查之應用初探」,地工技術,148,81-90。
[4]. 侯琮欽(2016),「軌道線形變化與沉陷檢測」,中鋼計畫結案報告。
[5]. 陳宏仁、謝有忠(2012),「空載光達的應用方向」,地質專題,31(2),26-30。
[6]. 劉昱緯(2015),「地面雷射掃描於結構幾何辨識與損傷檢測之應用」,國立成功大學土木工程研究所碩士論文。
[7]. Al-Kheder, S., Al-Shawabkeh, Y., Haala, N., 2009, Developing a documentation system for desert palaces in Jordan using 3D laser scanning and digital photogrammetry. Journal of Archaeological Science, 36(2): p. 537-546.
[8]. Armesto-González, J., Riveiro-Rodríguez, B., González-Aguilera, D., Rivas-Brea, M. T., 2010, Terrestrial laser scanning intensity data applied to damage detection for historical buildings. Journal of Archaeological Science, 37(12): p. 3037-3047.
[9]. Awwad, T. M., Qing, Z., Zhiqiang, D., Yeting, Z., 2010, An improved segmentation approach for planar surfaces from unstructured 3D point clouds. The Photogrammetric Record, 25(129): p. 5-23.
[10]. Ariyasu, E., Koizumi, M., Ikubo, M., Hatake, S., 2012, Application of Mobile LIDAR Mapping for Damage Survey after Great East Japan Earthquake. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, p. 573-576.
[11]. Bentley, J. L., 1975, Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9): p. 509-517.
[12]. Bezdek, J.C., Coray, C., Gunderson, R., Watson, J., 1981, Detection and characterization of cluster substructure i. linear structure: Fuzzy c-lines. SIAM Journal on Applied Mathematics, 40(2): p. 339-357.
[13]. Beckmann, N., Kriegel, H. P., Schneider, R., Seeger, B., 1990, The R*-tree: an efficient and robust access method for points and rectangles. in ACM SIGMOD Record. Acm.
[14]. Brownjohn, J. M., 2007, Structural health monitoring of civil infrastructure. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1851): p. 589-622.
[15]. Bizjak, M., 2015, 3D Reconstruction of Buildings from LiDAR Data.
[16]. Chiu, S. L., 1994, Fuzzy model identification based on cluster estimation. Journal of Intelligent & fuzzy systems, 2(3): p. 267-278.
[17]. Chang, P. C., Flatau, A., Liu, S. C., 2003, Review paper: health monitoring of civil infrastructure. Structural health monitoring, 2(3): p. 257-267.
[18]. Crespo, C., Armesto, J., González-Aguilera, D., Arias, P., 2010, Damage detection on historical buildings using unsupervised classification techniques. Internation Archives of Photogrammetry.
[19]. Dunn, J. C., 1973, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters.
[20]. Ester, M., Kriegel, H. P., Sander, J., Xu, X., 1996, A density-based algorithm for discovering clusters in large spatial databases with noise. in Kdd.
[21]. Farrar, C. R., Doebling, S.W., Nix, D.A., 2001, Vibration–based structural damage identification. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 359(1778): p. 131-149.
[22]. Farrar, C. R., Worden, K., 2007, An introduction to structural health monitoring. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1851): p. 303-315.
[23]. Gruen, A., Akca, D., 2005, Least squares 3D surface and curve matching. ISPRS Journal of Photogrammetry and Remote Sensing, 59(3): p. 151-174.
[24]. Gordon, S. J., Lichti, D. D., 2007, Modeling terrestrial laser scanner data for precise structural deformation measurement. Journal of Surveying Engineering, 133(2): p. 72-80.
[25]. González-Aguilera, D., Gómez-Lahoz, J., Sánchez, J., 2008, A new approach for structural monitoring of large dams with a three-dimensional laser scanner. Sensors, 8(9): p. 5866-5883.
[26]. Gonzalez-Aguilera, D., Gomez-Lahoz, J., Munoz-Nieto, A., Herrero-Pascual, J., 2008, Monitoring the health of an emblematic monument from terrestrial laser scanner. Nondestructive Testing and Evaluation, 23(4): p. 301-315.
[27]. González-Jorge, H., Gonzalez-Aguilera, D., Rodriguez-Gonzalvez, P., Arias, P., 2012, Monitoring biological crusts in civil engineering structures using intensity data from terrestrial laser scanners. Construction and Building Materials, 31: p. 119-128.
[28]. Jennifer, W., 2013, Using LiDAR to Assess Storm Damage Caused by Hurricane Sandy. LiDAR Magazine, 3(2).
[29]. Ke, Y. L., Shan, D. R., 2005, Edge-based segmentation of point cloud data. Zhejiang Daxue Xuebao(Gongxue Ban)/Journal of Zhejiang University(Engineering Science), 9(3): p. 377-380.
[30]. Kang, D. S., Lee, H. M., Park, H. S., Lee, I., 2007, Computing method for estimating strain and stress of steel beams using terrestrial laser scanning and FEM. in Key Engineering Materials. Trans Tech Publ.
[31]. Kim, M. K., Sohn, H., Chang, C. C., 2014, Automated dimensional quality assessment of precast concrete panels using terrestrial laser scanning. Automation in Construction, 45: p. 163-177.
[32]. Li, J. X., 2000, A Method for Extract Boundary of Complex Surface in Reverse Engineering. Machine Design and Manufacturing Engineering, 2.
[33]. Lynch, J. P., Loh, K. J., 2006, A summary review of wireless sensors and sensor networks for structural health monitoring. Shock and Vibration Digest, 38(2): p. 91-130.
[34]. Lambers, K., Eisenbeiss, H., Sauerbier, M., Kupferschmidt, D., Gaisecker, T., Sotoodeh, S., Hanusch, T., 2007, Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru. Journal of archaeological science, 34(10): p. 1702-1712.
[35]. MacQueen, J., 1967, Some methods for classification and analysis of multivariate observations. in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Oakland, CA, USA.
[36]. Moss, R. M., Matthews, S. L., 1995, In-service structural monitoring. a state of the art review. Structural Engineer, 73(2).
[37]. Mita, A., 1999, Emerging needs in Japan for health monitoring technologies in civil and building structures. in Proc. Second International Workshop on Structural Health Monitoring.
[38]. Moertini, V., Introduction to five data clustering algorithm. Integral, 2002. 7(2): p. 87-96.
[39]. Montalvao, D., Maia, N. M. M., Ribeiro, A. M. R., 2006, A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock and Vibration Digest, 38(4): p. 295-326.
[40]. Monserrat, O., Crosetto, M., 2008, Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS Journal of Photogrammetry and Remote Sensing, 63(1): p. 142-154.
[41]. Park, H. S., Lee, H. M., Adeli, H., Lee, I., 2007, A new approach for health monitoring of structures: terrestrial laser scanning. Computer‐Aided Civil and Infrastructure Engineering, 22(1): p. 19-30.
[42]. Sohn, H., Farrar, C. R., Hemez, F. M., Shunk, D. D., Stinemates, D. W., Nadler, B. R., Czarnecki, J. J., 2003, A review of structural health monitoring literature: 1996–2001. Los Alamos National Laboratory, USA.
[43]. Shuqian, K. Y. F., 2004, Research on direct extraction of boundary from point clouds. Chinese Journal of Mechanical Engineering, 9: p. 025.
[44]. Sun, D. Z., Zhu, C. Z., Li, Y. R., 2009, An improved extraction of boundary characteristic from scattered data. Journal of Shandong University (Engineering Science), 1: p. 014.
[45]. Sirmacek, B., Shen, Y., Lindenbergh, R., Zlatanova, S., Diakite, A., 2016, Comparison of ZEB1 and Leica C10 Indoor Laser Scanning Point Clouds. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, p. 143-149.
[46]. Wu, L. S., Yan, H. P., Chen, H. W., Gao, X. Q., 2014, A boundary extraction algorithm based on scattered point cloud. Computer Applications and Software, 11: p. 068.
[47]. Yager, R. R., Filev, D. P., 1994, Approximate clustering via the mountain method. IEEE Transactions on Systems, Man, and Cybernetics, 24(8): p. 1279-1284.
[48]. Zhang, X. Y., Zhou, M. Q., Geng, G. H., 2003, A Method of Detecting the Edge of Triangular Mesh Surface. Journal of Image and Graphics, 10: p. 022.
[49]. 中興測量有限公司,光達技術。Retrieved December 2016, from http://www.chsurvey.com.tw/page04.html
[50]. 達雲科技股份有限公司,光達資料處理。Retrieved December 2016, from http://www.lidar.com.tw
[51]. Fraunhofer IOSB, Change Detection in Urban Area. Retrieved December 2016, from http://www.iosb.fraunhofer.de/
[52]. Ioannis, T., 2015, March 6. The 5 most viewed terrestrial Laser Scanners on Geo-matching. GISBlog, Retrieved December 2016, from www.gisblog.com
[53]. Leica Geosystems, Retrieved December 2016, from http://hds.leica-geosystems.com/en/index.htm
[54]. TopScan, Mobile Laser Scanning. Retrieved December 2016, from http://www.topscan.de/
校內:2022-07-31公開