| 研究生: |
林育聖 Lin, Yu-Sheng |
|---|---|
| 論文名稱: |
具翼動角之旋轉Timoshenko樑的動態及穩定分析 Stability and Vibration of a Rotating Timoshenko Beam with a Flapping Angle |
| 指導教授: |
李森墉
Lee, Sen-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 穩定性 、翼動角 、旋轉樑 、分析方法 |
| 外文關鍵詞: | flapping angle, stability, analytical method, rotating beam |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具有翼動角的旋轉葉片常是被設計的,但是很少文獻探討翼動角在振動上的影響。本文研究具安置角和翼動角的旋動Timoshenko樑的振動和發散不穩定。利用漢米頓原理推導出旋轉Timoshenko樑的耦合統御微分方程式和其邊界條件。在不考慮軸向伸長和科氏力效應的情況下,當樑的幾何性質和材料性質可以表示成多項式形式,樑的精確解可以求得。
在本文中,呈現了旋轉Timoshenko樑參數之間的一些簡單的關係式。基於這些關係式,從一已知參數的系統可以預測另一未知系統的自然頻率和參數。並且研究旋轉的發散不穩定(拉伸挫曲)。本文探討了翼動角和其它物理參數對自然頻率的影響和發散不穩定的現象。
A rotating blade with a flapping angle is usually designed, but little literature investigated the effect of the flapping angle on vibration. This paper investigates divergent instability and vibration of a rotating Timoshenko beam with flapping and setting angles. It uses Hamilton's principle to derive the coupled governing differential equations and the boundary conditions for a rotating Timoshenko beam. Without considering the extension in the axial direction and the Coriolis forces effect , the probles's exact solution can be obtaind if the beam's geometric and material properties can be writtren into polynomial forms.
Some simple relations among the parameters of a rotating Timoshenko beam are revealed. Based on these relations, one can predict the natural frequencies and the parameters of another system from those of one known system. Moreover, the mechanism of divergent instability (tension buckling) is investigated. Finally, the influences of the flapping angle and other physic parameters on the natural frequencies, and the phenomenon of divergence instability are investigated.
[1] A. Leissa,” Vibrational Aspects of Rotating Turbomachinery Blades,” ASME Applied Mechanics Reviews, Vol. 34, No. 5, pp. 629-635, 1981.
[2] A. Rosen,” Structural and dynamic behavior of pretwisted rods and beams,” Applied Mechanics Review, Vol. 44, No. 12, pp. 483-515, 1991.
[3] V. Ramamurti and P. Balasubramanian,” Analysis of Turbomachine Blades: A Review,” The Shock and Vibration Digest, Vol. 16, pp. 13-28 , 1984.
[4] J. S. Rao,” Turbomachine Blade Vibration,” The Shock and Vibration Digest, Vol. 19, pp. 3-10, 1987.
[5] 林水木, “ 非均勻Timoshenko樑的分析,” 國立成功大學機械工程學研究所, 博士論文, 1993.
[6] Hsu Lo, J. E. Goldberg, and J. L. Bogdanoff,” Effect of Small Hub- Radius Change on Bending Frequencies of a Rotating Beam,” ASME Journal of Applied Mechanics, Vol. 27, No. 3, 548-550, 1960.
[7] S. Y. Lee, and Y. H. Kuo,” bending vibrations of a rotating nonuniform beam with an elastically restrained root,” Journal of Sound and Vibration, Vol. 154, No. 3, 1992, pp. 441-451.
[8] A. D. Wright, C. E. Smith, R. W. Thresher, and J. C. Wang,“ Vibration Modes of Centrifugally Stiffened Beams,” ASME Journal of Applied Mechanics, Vol. 49, No. 1, 197-202, 1982.
[9] D. Storti, and Y. Aboelnaga,“ Bending Vibrations of a Class of Rotating Beams with Hypergeometric Solutions,” ASME Journal of Applied Mechanics, Vol. 54, No. 2, 311-314, 1987.
[10] J. R. Banerjee,” Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method,” Journal of Sound and Vibration, Vol. 233, No. 5, pp.857-875, 2000.
[11] Ö. Özdemir and M. O. Kaya,” Flapwise bending vibration analysis of rotating tapered cantilever Bernoulli-Euler beam by differential transform method,” Journal of Sound and Vibration, Vol. 289, pp.413- 420, 2006.
[12] S. Y. Lee and S. M. Lin,” Bending Vibrations of Rotating Nonuniform Timoshenko Beam With an Elastically Restrained Root,” ASME Journal of Applied Mechanics, Vol. 61, No. 4, pp. 949-955, 1994.
[13] S. C. Lin and K. M. Hsiao” Vibration analysis of a rotation Timoshenko beam,” Journal of Sound and Vibration, Vol. 240, No. 2, pp.303-322, 2001.
[14] J. R. Banerjee,” Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams,” Journal of Sound and Vibration, Vol. 247, No. 1, pp.97-115, 2001.
[15] J. R. Banerjee, H. Su, and D. R. Jackson” Free vibration of rotating tapered beams using the dynamic stiffness method,” Journal of Sound and Vibration, Vol. 298, pp.1034-1054, 2006.
[16] 許哲嘉, “ 旋轉傾斜樑之動態分析,” 國立成功大學機械工程學研究所, 博士論文, 2006.
[17] S. M. Lin,” The Instability and Vibration of Rotating Beams with Arbitrary Pretwist and an Elastically Restrained Root,” ASME Journal of Applied Mechanics, Vol. 68, pp. 844-853, 2001.
[18] T. H. Young and T. M. Lin,” Stability of rotating pretwisted, tapered beams with randomly varying speed,” ASME Journal of Vibration and Acoustics, Vol. 120, No. 2, pp. 784-790, 1998.
[19] R. C. Kar and S. Neogy,” Stability of a rotating, pretwisted, non-uniform cantilever beam with tip mass and thermal gradient subjected to a non-conservative force,” Computers and Structures, Vol. 33, No. 2, pp. 499-507, 1989.
[20] David M. Egglestion and Forrest S. Stoddard, wind turbine engineering design, Van Nostrand Reinhold, New York, 1987.
[21] Siegfried Heier,” Grid integration of wind energy conversion systems,” Wiley,” Chichester, England, 1998.
[22] S. Y. Lee and S. M. Lin," Exact vibration solutions for nonuniform Timoshenko beams with attachments," AIAA Journal, Vol. 30, No.12, pp. 2930-2934, 1992.
[23] J. T. S. Wang, O. Mahrenholtz, and J. Bohm,” Extended Galerkin’s Method for Rotating Beam Vibrations using Legendre Polynomials,” Solid Mechanics Archives, Vol. 1, No. 4, pp. 341-365, 1976.
[24] T. Yokoyama,” Free Vibration Characteristics of Rotating Timoshenko Beam,” International Journal of Mechanical Sciences, Vol. 30, No. 10, pp. 743-755, 1988.
[25] D. H. Hodges, and M. J. Rutkowski,” Free-vibration analysis of rotating beams by a variable-order finite-element method,” AIAA journal, Vol. 19, No. 11, 1981, pp. 1459-1466.
[26] H. H. Yoo, S. H. Shin,“ Vibration analysis of rotating cantilever beams,” Journal of Sound and Vibration, Vol. 212, No. 5, pp. 807-828, 1998.
[27] S.S. Rao, R. S. Gupta,“ Finite element analysis of rotating Timoshenko beams,” Journal of Sound and Vibration, Vol. 242, No. 1, pp. 103-124, 2001.
[28] W. M. Ostachowicz, M. P. Cartmell,“ Vibration analysis of a rotating beam with variable angular velocity,” Machine Vibration, Vol. 5, pp. 189-196, 1996.
[29] C.L. Ko,“ Dynamic analysis for free vibrations of rotating sandwich tapered beams,” AIAA Journal, Vol. 27, No. 10, pp. 1425-1433, 1989.