簡易檢索 / 詳目顯示

研究生: 凃仕賢
Tu, Shih-Sian
論文名稱: 使用磁控濺鍍之氧化鎳結合n型氮化鎵應用在光電化學水分解之研究
The study of photoelectrochemicla water splitting using n-type GaN with sputtered NiO nanofilm as working electrode
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 109
中文關鍵詞: 光電化學產氫氮化鎵氧化鎳抗腐蝕
外文關鍵詞: n-type GaN, Photocorrosion, Stability, Water Splitting
相關次數: 點閱:123下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣四面環海,對於海水資源的取得唾手可得,並且台灣地理位處亞熱帶地區,具有較長的日照時間擁有豐富的太陽能源,因此我們未來的願景是利用太陽能來提供偏壓做為光電化學產生氫氣的動力,並且使用海水做為電解液,產生的氫氣能夠導入動力系統燃燒,燃燒過後的氫氣只會產生水而不像石化燃料會有溫室氣體的生成,產生的水又能夠導入電解水的系統循環再利用,然而在本篇論文中所使用的基板是n型氮化鎵,隨著電化學產氫的進行,會造成n型氮化鎵的光腐蝕並產生缺陷使光電流降低並抑制產氫效率,所以在本篇論文中著重於使用濺鍍(Sputter)的方式讓均勻、緻密的氧化鎳完整的覆蓋在n型氮化鎵之上,避免氮化鎵基板的光腐蝕影響產氫效率,以及能夠讓n型氮化鎵的工作壽命延長。
    使用濺鍍之氧化鎳當保護層的原因在於,就光學特性而言並不會與氮化鎵的吸收波段重疊也不會吸收可見光,因此不會影響氮化鎵基板的吸光能力;就能帶的角度來說,氧化鎳與n型氮化鎵接合後形成p-n junction後,氮化鎵與氧化鎳接面的能帶彎曲有利於電洞傳輸到氧化鎳而不會累積在氮化鎵表面造成光腐蝕;最後從化學角度來分析,透過添加氧化鎳發揮催化劑的效果,達到降低氧化水產生氧氣的過電位,有利於從載子轉移到電解液產氧氣的能力,避免電洞累積在氮化鎵表面造成光腐蝕。
    在本論文的第四章著重於探討不同厚度的氧化鎳對於光電化學系統產氫的影響,並透過穿透、反射圖譜等光學特性來觀察濺鍍上不同厚度的氧化鎳之後的發現經過電化學處後的氧化鎳薄膜由於會有表面粗化的效果因此n型氮化鎵基板能夠吸收較多的光,並且發現較厚的氧化鎳會造成遮光的效應,接著從XPS去分析表面的化學組成發現使用Sputter得到的氧化鎳同時具有Ni2+以及Ni3+,最後進行三電極電化學系統的量測,發現較薄的氧化鎳由EIS能夠看到阻值會降低,LSV中可以看到飽和電流會有上升的情形,以及經過穩定性測試以及收集的產物中都能夠看到濺鍍上4nm的氧化鎳能夠提升產氫效率以及能夠具有穩定的光電流。
    在本論文中的第五章節中使用不同濃度的氫氧化鉀容易對於4nm氧化鎳進行電化學處理,並證明NiOOH的存在有利於使光生電洞與電解液反應達到抗腐蝕的目的,從XPS觀察氧化鎳經過不同濃度的氧化鎳處理後,使用0.2M KOH處理後的氧化鎳能夠完全轉換Ni2+變成Ni3+也就是轉變為NiOOH,並且從SEM圖能夠觀察到高濃度的氫氧化鉀造成氮化鎵的嚴重腐蝕產生較多的缺陷,導致產氫效率的低落,最後從電化學的量測中能夠看到使用0.2M KOH處理之後的氧化鎳由於存在比例較高的NiOOH能夠有效將光生電洞傳往電解液並氧化水生成氧氣達到抗腐蝕的效果,因此可以得到較高的光電流,從產物的收集也能夠得到較高的產氫效率。

    Photoelectrochemical(PEC) devices that use n-type gallium nitride(n-GaN) as working electrode will have the problem of photocorrosion.The photocorrosion of n-GaN lead to the decrease of hydrogen production efficiency and shorten the working electrode life time. In order to improve hydrogen production efficiency long-term stability,we sputtered nickel oxide on n-GaN.Sputtered nickel oxide film has the property of transparent, chemically stable, electrocatalysts can provide a dense protective layer avoiding the photocorrosion of n-GaN.Futhermore, nickel oxide is a oxygen evolution catalyst can reduce OER overpotential,and it is facile to the oxidation of water to O2.
    First, comparing the effect of sputtering 4nm and 40nm nickel oxide on n-GaN and apply to PEC system generate hydrogen.Finding that 4nm nickel oxide has higher saturation current in LSV measurement. It show that 4nm can address the problem of photocorrosion of n-GaN by playing the role of p-n junction will facilitate the separation of carriers and hole can transfer into electrolyte.We speculate that this is because Ni(OH)2 doesn’t completely convert into NiOOH.
    In order to verify the existence of NiOOH is beneficial for reducing OER overpotential.Hence, electrochemical treatment of nickel oxide by using different concentrations of KOH,can convert Ni2+ into Ni3+.From XPS analysis, we can know that in the alkaline solution do electrochemical treatment can convert Ni2+ into Ni3+.

    摘要 I The study of photoelectrochemicla water splitting using n-type GaN with sputtered NiO nanofilm as working electrode III 誌謝 IX 目錄 X 圖目錄 XIII 表目錄 XVIII 第一章 序論 1 1.1前言 1 1.2研究目的與文獻回顧 3 1.3論文大綱 6 第二章 理論基礎 8 2.1濺鍍原理[11] 8 2.1.1 電漿理論 8 2.1.2 磁控濺鍍原理 8 2.2光電化學系統(Photoelectrochemical System , PEC) 10 2.2.1 PEC 工作原理簡介[12] 10 2.2.2參考電極[12, 13] 13 2.2.3對電極材料選擇[13] 14 2.2.4電化學電位轉換成真空能階系統[15] 15 2.3光能量轉換成化學能量轉換效率及產率 16 2.3.1 Applied Bias Photon-to-Current Efficiency(ABPE)[12] 16 2.3.2氫氣產率 16 2.3.3 法拉第效率(Faraday efficiency)[17] 17 2.4光腐蝕現象[18] 17 2.5 半導體物理 19 2.5.1空間電荷層以及能帶彎曲(Space charge layer and band bending) 19 2.5.2暗態下半導體與電解液接合後造成的能帶彎曲[19] 20 2.5.3平帶電壓(Flatband potential)[13] 21 第三章 實驗試片製作與實驗架構 24 3.1工作電極nGaN/NiO之製程 24 3.1.1 成長磊晶層 24 3.1.2 裁切兩吋圓nGaN 24 3.1.3清洗試片 24 3.1.4 磁控濺鍍機(Sputter)濺鍍氧化鎳薄膜 24 3.1.5製作工作電極之金屬歐姆接觸(Ohmic contact) 25 3.1.6覆蓋環氧樹脂(epoxy) 25 3.2工作電極nGaN/NiO之電化學製程 27 3.2.1 電解液配置 27 3.2.2 電化學處理 27 3.3光電化學系統裝置介紹 27 3.4量測儀器介紹 29 3.4.1 紫外光-可見光光譜儀(Ultraviolet-Visible Spectroscopy) 29 3.4.2 掃描式電子顯微鏡(Scanning Electron Microscope , SEM) [20] 30 3.4.3 X射線光電子能譜儀 (X-ray photoelectron spectroscopy ,XPS) 30 3.4.4 原子力顯微鏡(Atomic Force Microscope , AFM)[22] 31 3.4.5 IPCE[12] 31 3.4使用儀器以及耗材 33 第四章 氧化鎳濺鍍在n型氮化鎵上應用光電化學系統 35 4.1引言 35 4.2實驗數據 36 4.2.1 n-GaN/NiO工作電極之光學特性 36 4.2.2 XPS分析 40 4.2.3 Mott-Schottky量測分析 40 4.2.4 開路電壓量測(Open-circuit potential , OCP) 46 4.2.5 線性掃描伏安法(Linear sweep voltammetry , LSV) 49 4.2.6化學阻抗頻譜分析(Electrochemical Impedance Spectroscopy,EIS) 55 4.2.7外加一伏偏壓下長時間穩定性J-T曲線 59 4.2.8 工作電極穩定性實驗前後表面形貌 64 4.2.9光電化學系統效率計算 73 第五章 氧化鎳濺鍍於n型氮化鎵表面經過在氫氧化鉀溶液中進行電化學處理後應用在光電化學系統 76 5.1引言 76 5.2實驗數據 77 5.2.1試片命名 77 5.2.2 n-GaN/NiO 4nm在KOH溶液中進行電化學處理後之光學特性 77 5.2.23XPS分析 79 5.2.4 Mott-Schottky量測分析 84 5.2.5開路電壓量測(Open-circuit potential , OCP) 85 5.2.6 線性掃描伏安法(Linear sweep voltammetry , LSV) 86 5.2.7化學阻抗頻譜分析(Electrochemical Impedance Spectroscopy,EIS) 90 5.2.8外加一伏偏壓下長時間穩定性J-T曲線 92 5.2.9 Tafel plot 94 5.2.10工作電極表面形貌 96 5.2.10光電化學系統效率計算 103 第六章 結論與未來展望 106 6.1結論 106 6.2未來展望 107 參考文獻 107

    [1] 李貫綸, "使用氮化鎵系列薄膜作為光電極於氯化鈉溶液和海水電解質中生成氫氣與還原二氧化碳為甲酸之研究," 光電科學與工程學系, 成功大學, 2018年, 2018.
    [2] W. P. P. Worldometers, Present, and Future. [Online].
    [3] REN21 Renewables 2018 global Status Report [Online].
    [4] 新能源與產業技術綜合開發機構《NEDO氫能源白皮書》 [Online].
    [5] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," nature, vol. 238, no. 5358, p. 37, 1972.
    [6] K. Fujii, T. Karasawa, and K. Ohkawa, "Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation," Japanese journal of applied physics, vol. 44, no. 4L, p. L543, 2005.
    [7] K. Koike, T. Goto, S. Nakamura, S. Wada, and K. Fujii, "Investigation of carrier transfer mechanism of NiO-loaded n-type GaN photoanodic reaction for water oxidation by comparison between band model and optical measurements," MRS Communications, vol. 8, no. 2, pp. 480-486, 2018.
    [8] H. Sato, T. Minami, S. Takata, and T. Yamada, "Transparent conducting p-type NiO thin films prepared by magnetron sputtering," Thin solid films, vol. 236, no. 1-2, pp. 27-31, 1993.
    [9] A. M. Reddy, A. S. Reddy, K.-S. Lee, and P. S. Reddy, "Effect of oxygen partial pressure on the structural, optical and electrical properties of sputtered NiO films," Ceramics International, vol. 37, no. 7, pp. 2837-2843, 2011.
    [10] M. Xiao, Y. Tian, Y. Yan, K. Feng, and Y. Miao, "Electrodeposition of Ni (OH) 2/NiOOH in the presence of urea for the improved oxygen evolution," Electrochimica Acta, vol. 164, pp. 196-202, 2015.
    [11] R. Hide, "Glow Discharge Processes: Sputtering and Plasma Etching," ed: IOP Publishing, 1981.
    [12] Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical water splitting. Springer, 2013.
    [13] R. Van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Springer, 2012.
    [14] M. G. Walter et al., "Solar Water Splitting Cells," Chemical Reviews, vol. 110, no. 11, pp. 6446-6473, 2010/11/10 2010.
    [15] C. GRIMES, O. VARGHESE, and S. RANJAN, Light, water, hydrogen: the solar generation of hydrogen by water photoelectrolysis. Springer Science & Business Media, 2007.
    [16] T. Ogita, Y. Uetake, Y. Yamashita, A. Kuramata, S. Yamakoshi, and K. Ohkawa, "InGaN photocatalysts on conductive Ga2O3 substrates," physica status solidi (a), vol. 212, no. 5, pp. 1029-1032, 2015.
    [17] S. H. Kim, M. Ebaid, J.-H. Kang, and S.-W. Ryu, "Improved efficiency and stability of GaN photoanode in photoelectrochemical water splitting by NiO cocatalyst," Applied Surface Science, vol. 305, pp. 638-641, 2014.
    [18] S. Chen and L.-W. Wang, "Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution," Chemistry of Materials, vol. 24, no. 18, pp. 3659-3666, 2012.
    [19] A. W. Bott, "Electrochemistry of semiconductors," Current Separations, vol. 17, pp. 87-92, 1998.
    [20] 羅聖全. 材料世界網 ,電子顯微鏡介紹–SEM [Online].
    [21] 張立信, "表面化學分析技術," 奈米通訊, vol. 19, 2012.
    [22] 李其紘, "本月專題-原子力顯微鏡的基本介紹," 科學研習 Science Study Monthly, vol. 52, p. 19, 2013 MAY.
    [23] L. Ai et al., "Influence of substrate temperature on electrical and optical properties of p-type semitransparent conductive nickel oxide thin films deposited by radio frequency sputtering," Applied Surface Science, vol. 254, no. 8, pp. 2401-2405, 2008.
    [24] K. Sun et al., "Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films," Proceedings of the National Academy of Sciences, vol. 112, no. 12, pp. 3612-3617, 2015.
    [25] A. Kusior, A. Wnuk, A. Trenczek-Zajac, K. Zakrzewska, and M. Radecka, "TiO2 nanostructures for photoelectrochemical cells (PECs)," International Journal of Hydrogen Energy, vol. 40, no. 14, pp. 4936-4944, 2015.
    [26] Y. Huang et al., "Highly transparent light emitting diodes on graphene encapsulated Cu nanowires network," Scientific reports, vol. 8, no. 1, p. 13721, 2018.
    [27] J.-Y. Jung, J.-Y. Yu, and J.-H. Lee, "Dynamic Photoelectrochemical Device with Open-Circuit Potential Insensitive to Thermodynamic Voltage Loss," The journal of physical chemistry letters, vol. 9, no. 18, pp. 5412-5418, 2018.
    [28] S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, and R. van de Krol, "Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting," Chemistry of Materials, vol. 28, no. 12, pp. 4231-4242, 2016.

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE