| 研究生: |
蕭郁芬 Hsiao, Yu-Fen |
|---|---|
| 論文名稱: |
移動最小二乘法在封閉圓柱殼挫屈分析上之應用 Buckling Analysis of Close Cylindrical Shells by the Moving Least Square Method |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 移動最小二乘法 、圓柱薄殼 、挫屈 |
| 外文關鍵詞: | Moving Least Square Method, cylindrical shell, buckling |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文採用移動最小二乘法(Moving Least Square Method)來分析圓柱薄殼挫屈問題。首先基於一階剪應變形之假設導出圓柱殼結構的合應力、應變與位移的關係,進而建立圓柱殼的挫屈的控制方程式,再利用移動最小二乘法進行離散化建立數值運算程序以分析在各種荷重與邊界條件下圓柱殼之挫屈荷重與挫屈模態。
本文探討圓柱薄殼受側向圍壓、軸向壓力與扭力作用之挫屈行為。邊界條件考慮了兩邊簡支承端、兩邊固定端與一邊簡支承端一邊固定端等情況。在計算例中針對不同基底函數階數、板尺寸、厚度等因素探討對挫屈荷重與模態的影響。並用分析數據收斂結果與解析解進行比較驗證了本文方法之準確性。
In this paper, we use the Moving Least Square Method to analysis the buckling of cylindrical shell. Base the assumption of first order shear deformation, we derived the relationship between the stress results, strains and displacements of the cylindrical shell, and then establish the governing equations of buckling of the cylindrical shell. Using the Moving Least Square Method we establish a numerical procedure to analysis the buckling load and mode shape of a cylindrical shell under various loadings and boundary conditions.
In this paper, we discuss the buckling behavior of a thin cylindrical shell under lateral confining pressure, axial pressure and torque. The boundary conditions of both sides simply supported, both sides of fixed end and one side simply supported one side fixed are considered. In the examples we the accuracy of numeral results under different order of the basis function, size and thickness of plate, the results were compared with the analytical solution to validate the accuracy of this method.
[1] L. B. Lucy, “A numerical approach to the testing of the fission hypothesis,” The Astronomical Journal, Vol.8, pp.1013-1024, 1977.
[2] R. A.Gingold and J.J. Monaghan, “Smoothed particle hydrodynamics: theory and application to non-spherical stars,” Monthly Notices of the Royal Astronomical Aociety, Vol.181, pp.375-389, 1977
[3] W. K. Liu, S. Jun and Y. F. Zhang, “Reproducing kernel particle method,” International Journal for Mumerical Method in Fluids, Vol.20, pp.1081-1106, 1995
[4] J. S. Chen, C. Pan, C. T. Wu and W. K. Liu, “Reproducing kernel particle method for large deformation analysis of nonlinear structures,” Computer Method in Applied Mechanics and Engineering, Vol.139, pp.195-227, 1996
[5] B. Nayroles, G. Touzot & P. Villon, “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Element,” Computational Mechanics, Vol.10, pp.307-318, 1992
[6] T. Belytschko, Y. Y. Lu & L. Gu,“Element-Free Galerkin Methods,” International Journal for Numerical Methods in Engineering, Vol.37, pp.229-256, 1994
[7] T. Liszka and J. Orkist, “The finite difference method at arbitrary irregular grids and its applications in applied mechanics,” Computers and Structures, Vol.11, pp.83-95, 1980
[8] S. N. Atluri and T. Zhu, “A new meshless local Petrov-Galerkin(MLPG) approach to nonlinear problem in computation modeling and simulation,” Computational Modeling Simulation Engineering, Vol.3, pp.187-196,1998
[9] S. N. Atluri and T. Zhu, “A new meshless local Petrov-Galerkin(MLPG) approach in computayional mechanics,” Computational mechanics, Vol.22, pp.117-127,1998
[10] Y. T. Gu and G. R. Liu,“A boundary point interpolation method for stress analysis of solids,” Computational mechanics, Vol.28, pp.47-54,2002
[11] 盛若磐,「元素釋放法積分法則與權函數之改良」,近代工程計算論壇論文集,國立中央大學土木系,2000
[12] Y. M. Wang, S. M. Chen & C. P. Wu,“A Meshless Collocation Method Basedon the Differential Reproducing Kernel Interpolation,” Computational Mechnaics, Vol.45, pp.585-606,2010
[13] S. W.Yang, Y. M. Wang, C. P. Wu & H. T. Hu, “A Meshless Collocation method Based on the Differential Reproducing Kernel Approximation,” Computer Modeling Engineering & Sciences, Vol.60, pp.1-39, 2010
[14] S. M. Chen, C. P. Wu & Y. M. Wang, “A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli-Euler beams and Kirchhoff-Love plates,” Computational Mechanics, Vol.47, pp.425-453, 2011
[15] Wilhelm Flügge,“Stresses in shells,” Springer-Verlag, New York , 1973
[16] 阮智祺,「微分再生核近似法於圓柱殼彈性挫屈之分析」,國立成功大學土木研究所碩士論文,2004
[17] Y. H. Wang, W. D. Li, L. G. Tham, P. K. K. Lee and Z. Q. Yue,“Parametric Study for an Efficient Meshless Method in Vibration Analysis,” Journal of Sound and Vibration, Vol.255(2), pp.261-279, 2002
[18] G. R. Liu and Y. T. Gu,“A Local Radial Point Interpolation Method(LRPIM) for Free Vibration Analyses of 2-D Solids,” Journal of Sound and Vibration, Vol.246(1), pp.29-46, 2001
[19] Y. T. Gu and G. R. Liu,“A Meshless Local Petrov-Galerkin(MLPG) Method for Free and Forced Vibration Analyses for Solids,” Computational Mechanics, Vol.27, pp.188-198, 2001
校內:2017-08-16公開