簡易檢索 / 詳目顯示

研究生: 彭耀德
Peng, Yao-Te
論文名稱: 幾何轉換法於植牙導引板之設計研究
The research of dental surgical guide design using geometric conversion method
指導教授: 張志涵
Chang, Chih-Han
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 52
中文關鍵詞: 植牙導引板人工牙根幾合轉換法3D列印
外文關鍵詞: surgical guide, dental implant, geometric conversion method, 3D printing
相關次數: 點閱:92下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植牙手術目前已普遍被使用於缺牙治療上,一個成功的植牙手術不僅須考量到植體與齒槽骨的骨整合外,對於術後假牙的美觀性也越來越被重視。而植牙導引板的使用可以輔助臨床牙醫師快速、精確、傷口小地情況下完成植牙手術,透過術前電腦斷層影像的評估與植牙位置規劃,牙醫師只需依照植牙導引板上的導引孔洞即可取得最佳的植牙位置。然而,植牙導引板的製作通常為使用3D列印方式完成,但3D列印方式所產生的植牙導引板容易因電腦斷層影像筏值的人為設定及3D列印機的加工誤差造成植牙準確度不穩定,且3D列印的植牙導引板通常製作成本也較高,也因此,能夠精準、快速、低成本的取得植牙導引板仍然一直是臨床上所需要的。
    本研究使用幾何轉換法(GCM)將植牙規劃位置進行投影量測,並將此投射資訊轉移至標準板上,最後搭配鑽孔機即可完成植牙導引板製作。為了驗證準確度,本研究分別以體外及體內試驗進行幾何轉換法完成之植牙導引板驗證。於體外試驗中,GCM手術導引板與3D列印導引板於缺牙模型 (缺牙位置:32 36 45 46 )上進行植牙模擬試驗,並比較兩種方法於實際植牙位置與規劃之誤差,結果顯示GCM植牙導引板與3D列印導引板於植牙角度偏差量上無顯著的差異(p>0.05)。GCM植牙偏差量於植體頭部位置為0.65±0.39mm、植體尖端位置為0.81±0.33mm及整體角度偏差為0.76°±0.51°。3D列印導引板之植牙偏差量於植體頭部位置為0.44±0.22mm、植體尖端位置為0.66±0.37mm及3D角度偏差為0.58°±0.32°。於體內試驗中,9位缺牙患者以GCM導引板進行植牙手術,結果顯示GCM植牙導板之偏差量於植體頭部位置可達1.03±0.27mm、植體尖端位置1.17±0.24mm及3D角度偏差1.37°±0.21°。本研究提出之幾何轉換法已證明其精確度,並且可有效地將拍攝用導引板轉換成植牙手術導引板。

    Dental implants are widely used in the restoration of missing teeth. Successful implant surgery not only considers osseointegration between implant and bone but also places considerable emphasis on the esthetic appearance of the restored tooth. A dental surgical guide is used to help the dentist place the dental implant quickly, accurately, and with minimal invasion. Through preoperative evaluation and virtual implant planning in the edentulous region, dentists can place an implant in the optimal position by following the guide holes in the surgical guide. The guide is generally fabricated through three-dimensional (3D) printing. However, the stability of a 3D-printed guide is sensitive to, and influenced by, the threshold value setting in the image process software and errors in the 3D printing procedure. Moreover, the cost of a 3D-printed guide for clinical applications is high. Thus, an accurate, fast, and low-cost method for producing surgical guides remains a clinical requirement.
    To this end, this study proposes a geometric conversion method (GCM) to measure the planned implant position in projection planes. Using this conversion information, the planned implant positions can be transformed into a surgical guide using a drilling machine. In vitro and in vivo tests were designed to validate the GCM guide. The in vitro test was applied to compare the accuracy of the GCM guide and the 3D-printed guide by employing edentulous models (implant sites: 32, 36, 45, and 47). The in vitro test revealed no significant differences (p > 0.05) in the planned and placed angulations between the GCM guide and the 3D-printed guide. In the GCM guide, the deviation between the planned and placed implants was 0.65 ± 0.39 mm in the implant head, 0.81 ± 0.33 mm in the implant apex, and 0.76° ± 0.51° in 3D angulation. In the 3D-printed guide, the deviation between the planned and placed implants was 0.44 ± 0.22 mm in the implant head, 0.66 ± 0.37 mm in the implant apex, and 0.58° ± 0.32° in 3D angulation. For the in vivo test, nine edentulous patients were selected to receive GCM-guided surgery. The results indicated that GCM guide could achieve the 3D offset deviations of 1.03±0.27mm and 1.17±0.24mm at the implant head and apex, respectively and 1.37°±0.21°for the 3D angulation. These results evidence the accuracy of the GCM, and it is therefore a feasible method for transforming a radiographic guide into a surgical guide.

    Abstract I 中文摘要 III 致謝 IV Contents V List of Tables VI List of Figures VI Chapter 1. General Introduction 1 1.1 Dental implant surgery 1 1.2 Types of surgical guide 2 1.3 Literature Review of Guide Surgery 8 1.4 Motivation and Objectives 11 Chapter 2. Material and Methods 12 2.1 Definition of Geometric Conversion Method (GCM) 12 2.1.1 Radiographic guide preparation: 12 2.1.2 Implant virtual planning: 13 2.1.3 Geometric projection definition: 14 2.2 Experimental Design 17 2.2.1 In-vitro test 17 2.2.2 In-vivo test 21 2.3 Data analysis 23 2.3.1 The accuracy validation in GCM guide fabrication procedure 23 2.3.2 The accuracy validation of planned and placed implant 24 2.3.3 The precision error of surgical guide 26 Chapter 3. Results 27 3.1 Result of in-vitro test 27 3.2 Result of in-vivo test 34 Chapter 4. Discussion 39 Chapter 5. Conclusion & Future works 46 References 47

    1. Yatzkair, G., et al., Accuracy of computer-guided implantation in a human cadaver model. Clin Oral Implants Res, 2015. 26(10): p. 1143-9.
    2. Karoussis, I.K., et al., Effect of implant design on survival and success rates of titanium oral implants: a 10-year prospective cohort study of the ITI Dental Implant System. Clin Oral Implants Res, 2004. 15(1): p. 8-17.
    3. Kim, Y.K., et al., Magnification rate of digital panoramic radiographs and its effectiveness for pre-operative assessment of dental implants. Dentomaxillofac Radiol, 2011. 40(2): p. 76-83.
    4. Harirforoush, R., S. Arzanpour, and B. Chehroudi, The effects of implant angulation on the resonance frequency of a dental implant. Med Eng Phys, 2014. 36(8): p. 1024-32.
    5. Arisan, V., C.Z. Karabuda, and T. Ozdemir, Implant surgery using bone- and mucosa-supported stereolithographic guides in totally edentulous jaws: surgical and post-operative outcomes of computer-aided vs. standard techniques. Clin Oral Implants Res, 2010. 21(9): p. 980-8.
    6. Barnea, E., et al., Accuracy of a laboratory-based computer implant guiding system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010. 109(5): p. e6-e10.
    7. Ozan, O., et al., Clinical accuracy of 3 different types of computed tomography-derived stereolithographic surgical guides in implant placement. J Oral Maxillofac Surg, 2009. 67(2): p. 394-401.
    8. Stapleton, B.M., et al., Application of digital diagnostic impression, virtual planning, and computer-guided implant surgery for a CAD/CAM-fabricated, implant-supported fixed dental prosthesis: a clinical report. J Prosthet Dent, 2014. 112(3): p. 402-8.
    9. Sun, Y., et al., Accuracy of Dental Implant Placement Using CBCT-Derived Mucosa-Supported Stereolithographic Template. Clin Implant Dent Relat Res, 2015. 17(5): p. 862-70.
    10. Park, C., et al., Accuracy of implant placement using precision surgical guides with varying occlusogingival heights: an in vitro study. J Prosthet Dent, 2009. 101(6): p. 372-81.
    11. Polizzi, G. and T. Cantoni, Five-year follow-up of immediate fixed restorations of maxillary implants inserted in both fresh extraction and healed sites using the NobelGuide system. Clin Implant Dent Relat Res, 2015. 17(2): p. 221-33.
    12. Rosenfeld, A.L., G.A. Mandelaris, and P.B. Tardieu, Prosthetically directed implant placement using computer software to ensure precise placement and predictable prosthetic outcomes. Part 3: stereolithographic drilling guides that do not require bone exposure and the immediate delivery of teeth. Int J Periodontics Restorative Dent, 2006. 26(5): p. 493-9.
    13. Rosenfeld, A.L., G.A. Mandelaris, and P.B. Tardieu, Prosthetically directed implant placement using computer software to ensure precise placement and predictable prosthetic outcomes. Part 2: rapid-prototype medical modeling and stereolithographic drilling guides requiring bone exposure. Int J Periodontics Restorative Dent, 2006. 26(4): p. 347-53.
    14. Vercruyssen, M., et al., Different techniques of static/dynamic guided implant surgery: modalities and indications. Periodontol 2000, 2014. 66(1): p. 214-27.
    15. Spector, L., Computer-aided dental implant planning. Dent Clin North Am, 2008. 52(4): p. 761-75, vi.
    16. Verhamme, L.M., et al., A clinically relevant validation method for implant placement after virtual planning. Clin Oral Implants Res, 2013. 24(11): p. 1265-72.
    17. Berdougo, M., et al., Flapless implant surgery using an image-guided system. A 1- to 4-year retrospective multicenter comparative clinical study. Clin Implant Dent Relat Res, 2010. 12(2): p. 142-52.
    18. Fortin, T., et al., Panoramic images versus three-dimensional planning software for oral implant planning in atrophied posterior maxillary: a clinical radiological study. Clin Implant Dent Relat Res, 2013. 15(2): p. 198-204.
    19. Van de Wiele, G., et al., The accuracy of guided surgery via mucosa-supported stereolithographic surgical templates in the hands of surgeons with little experience. Clin Oral Implants Res, 2015. 26(12): p. 1489-94.
    20. Ewers, R., et al., Planning implants crown down--a systematic quality control for proof of concept. J Oral Maxillofac Surg, 2010. 68(11): p. 2868-78.
    21. Behneke, A., et al., Accuracy assessment of cone beam computed tomography-derived laboratory-based surgical templates on partially edentulous patients. Clin Oral Implants Res, 2012. 23(2): p. 137-43.
    22. Chan, P.W., et al., Stereoscopic technique for conversion of radiographic guide into implant surgical guide. Clin Implant Dent Relat Res, 2013. 15(4): p. 613-24.
    23. Takeshi Toyoshima, H.T., Masanori Sasaki, Eiji Ichimaru, Yasushi Naito, and K.K. Yasuyuki Matsushita, Seiji Nakamura, Accuracy of implant surgery with surgical guide by inexperienced clinicians: an in vitro study. Clinical and Experimental Dental Research, 2015. Volume 1(1): p. 10-17.
    24. Kuhl, S., et al., Technical accuracy of printed surgical templates for guided implant surgery with the coDiagnostiX software. Clin Implant Dent Relat Res, 2015. 17 Suppl 1: p. e177-82.
    25. Turbush, S.K. and I. Turkyilmaz, Accuracy of three different types of stereolithographic surgical guide in implant placement: an in vitro study. J Prosthet Dent, 2012. 108(3): p. 181-8.
    26. Cushen, S.E. and I. Turkyilmaz, Impact of operator experience on the accuracy of implant placement with stereolithographic surgical templates: an in vitro study. J Prosthet Dent, 2013. 109(4): p. 248-54.
    27. Soares, M.M., et al., An in vitro model to evaluate the accuracy of guided surgery systems. Int J Oral Maxillofac Implants, 2012. 27(4): p. 824-31.
    28. Vasak, C., et al., Evaluation of three different validation procedures regarding the accuracy of template-guided implant placement: an in vitro study. Clin Implant Dent Relat Res, 2015. 17(1): p. 142-9.
    29. Widmann, G., et al., Accuracy of Image-Fusion Stereolithographic Guides: Mapping CT Data with Three-Dimensional Optical Surface Scanning. Clin Implant Dent Relat Res, 2015. 17 Suppl 2: p. e736-44.
    30. Cassetta, M., et al., The intrinsic error of a stereolithographic surgical template in implant guided surgery. Int J Oral Maxillofac Surg, 2013. 42(2): p. 264-75.
    31. Koop, R., et al., Tolerance within the sleeve inserts of different surgical guides for guided implant surgery. Clin Oral Implants Res, 2013. 24(6): p. 630-4.
    32. Anssari Moin, D., et al., A Novel Approach for Computer-Assisted Template-Guided Autotransplantation of Teeth With Custom 3D Designed/Printed Surgical Tooling. An Ex Vivo Proof of Concept. J Oral Maxillofac Surg, 2016. 74(5): p. 895-902.
    33. Shen, P., et al., Accuracy evaluation of computer-designed surgical guide template in oral implantology. J Craniomaxillofac Surg, 2015. 43(10): p. 2189-94.
    34. Di Giacomo, G.A., et al., Accuracy and complications of computer-designed selective laser sintering surgical guides for flapless dental implant placement and immediate definitive prosthesis installation. J Periodontol, 2012. 83(4): p. 410-9.
    35. Furhauser, R., et al., Esthetics of Flapless Single-Tooth Implants in the Anterior Maxilla Using Guided Surgery: Association of Three-Dimensional Accuracy and Pink Esthetic Score. Clin Implant Dent Relat Res, 2015. 17 Suppl 2: p. e427-33.
    36. Verhamme, L.M., et al., An Accuracy Study of Computer-Planned Implant Placement in the Augmented Maxilla Using Mucosa-Supported Surgical Templates. Clin Implant Dent Relat Res, 2015. 17(6): p. 1154-63.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE