| 研究生: |
鄭至暐 Cheng, Chih-Wei |
|---|---|
| 論文名稱: |
合併化學治療與攜帶抗血管新生基因之腺病毒對原位肺腺癌小鼠模式進行治療 Combination of chemotherapy and adenovirus-mediated anti-angiogenesis gene therapy in an orthotopic murine model of lung adenocarcinoma |
| 指導教授: |
蕭璦莉
Shiau, Ai-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 化療 、抗血管新生 |
| 外文關鍵詞: | anti-angiogenesis, chemotherapy |
| 相關次數: | 點閱:97 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺腺癌為非小細胞型肺癌(non-small cell lung cancer)的一種,是台灣目前最常發生的惡性腫瘤之一。肺腺癌早期症狀不明顯且不易察覺,但末期常併發遠端轉移及惡性肋膜腔積水。臨床上肺癌末期病人若併發惡性肋膜腔積水,通常被認為預候較差及有較高的死亡率。目前針對併發惡性肋膜腔積水的病人尚無較好的治療方式,因而尋求有效的治療策略是極必須的。腫瘤的生長及轉移需要血管新生來提供其氧氣及養分,乃至於向外轉移的路徑,因此目前有許多研究致力於阻斷腫瘤生長中所需的血管新生作用以達到治療癌症的目的。除了抑制腫瘤的生長,抗血管新生治療也可藉降低血管通透性以減緩肋膜腔積水的生成。因此本實驗嘗試以重組腺病毒攜帶血管阻斷素(angiostatin)作基因治療,來針對併發惡性肋膜腔積水的肺腺癌作治療。在基因治療中,治療基因的表現效率是關係治療成功與否很重要的一環。一般在基因治療中常使用人類巨細胞病毒啟動子(cytomegalovirus major immediate-early promoter)這個被認為可持續大量表現目標基因的啟動子來表現治療基因。在針對人類巨細胞病毒啟動子的研究中指出,在其DNA序列上具有四個nuclear factor-κB (NF-κB)的結合位置,且啟動子的轉錄活性會在細胞受到壓力時上升。因此,本實驗擬利用肺癌治療中常使用的化療藥物cisplatin與用人類巨細胞病毒啟動子表現血管阻斷素的重組病毒作合併治療,希望藉cisplatin產生的細胞毒殺壓力使人類巨細胞病毒啟動子的轉錄效率提高,使抗血管新生基因治療有更好的效果。在細胞實驗中我們證實cisplatin的確可使人類巨細胞病毒啟動子轉錄效率提高,使得治療基因血管阻斷素的表現量提高。為進一步證實此治療策略的效果,我們建立了以胸腔注射路易斯氏肺癌(Lewis lung carcinoma, LL2)細胞株,使其在肋膜腔中生長,進一步產生惡性肋膜腔積水的動物模式來評估治療效果。動物實驗的結果證實,合併cisplatin及重組腺病毒的基因治療,可有效減緩肋膜腔中腫瘤的生長並降低惡性肋膜腔積水的生成。由結果顯示,利用化療藥物強化治療基因表現的治療策略或許可以成為具潛力的癌症治療方法。
Lung adenocarcinoma, one cell type of non-small cell lung cancer (NSCLC), is one of the most common human malignant tumors. The end stage of lung adenocarcinoma is often associated with distant metastasis and formation of malignant pleural effusion (PE). Malignant PE has consistently been shown to indicate a poor prognosis in advanced lung cancer patients, and associated with high morbidity and mortality. Thus, an effective therapeutic modality is urgently needed. Angiogenesis is necessary to supply oxygen and nutrition for tumor growth in both primary and metastatic sites. Increased vascular permeability and leakage resulting from angiogenesis play a pivotal role in the development of malignant PE. Therefore, blockade of angiogenesis has been expected to prevent not only tumor growth but also PE formation, and thus improving the prognosis of patients with NSCLC. Although the human cytomegalovirus (CMV) major immediate-early promoter has been regarded as a constitutive promoter, there are four nuclear factor-κB (NF-κB) response elements on CMV IE promoter, and cellular stress responses are known to enhance transcription from this promoter. It has been reported that induction of genotoxic stress by cisplatin, a commonly used chemotherapeutic agent for lung cancer, enhances NF-κB activity. Therefore, cisplatin treatment in combination with adenoviral vector encoding anti-angiogenic molecules driven by the CMV IE promoter is expected to have synergistic therapeutic efficacy against lung adenocarcinoma. In this study, we used Lewis lung carcinoma (LL2) cells to establish an orthotopic lung adenocarcinoma in C57BL/6 mice. LL2 cells grew in the pleural cavity, invaded contiguous structures, including diaphragm, mediastinum, pericardium, and lung parenchyma, and produced PE in the mice. In this model, when tumor-bearing mice were treated with cisplatin, smaller tumor nodules and fewer or no PE was found, suggesting that this model can be used to evaluate various treatment regimens. Cisplatin treatment enhanced CMV IE promoter activity probably due to NF-κB in LL2 cells, as determined by a reporter assay. Cisplatin treatment in conjunction with AdAST, an adenoviral vector encoding angiostatin, significantly reduced tumor weight and decreased PE volume in mice bearing orthotopic LL2 lung adenocarcinoma. Taken together, these results suggest that angiostatin delivered by adenoviral vector in combination with cisplatin may have therapeutic potential for the treatment of malignant PE associated lung adenocarcinoma.
Bellas, R.E., Lee, J.S., and Sonenshein, G.E. (1995). Expression of a constitutive NF-kappa B-like activity is essential for proliferation of cultured bovine vascular smooth muscle cells. J. Clin. Invest 96, 2521-2527.
Benedict, C.A., Angulo, A., Patterson, G., Ha, S., Huang, H., Messerle, M., Ware, C.F., and Ghazal, P. (2004). Neutrality of the canonical NF-kappaB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro. J. Virol. 78, 741-750.
Cao, Y. (2004). Antiangiogenic cancer therapy. Semin. Cancer Biol. 14, 139-145.
Cao, Y. and Xue, L. (2004). Angiostatin. Semin. Thromb. Hemost. 30, 83-93.
Chastel, C., Jiricny, J., and Jaussi, R. (2004). Activation of stress-responsive promoters by ionizing radiation for deployment in targeted gene therapy. DNA Repair (Amst) 3, 201-215.
Clesham, G.J., Browne, H., Efstathiou, S., and Weissberg, P.L. (1996). Enhancer stimulation unmasks latent gene transfer after adenovirus-mediated gene delivery into human vascular smooth muscle cells. Circ. Res. 79, 1188-1195.
Doki, Y., Murakami, K., Yamaura, T., Sugiyama, S., Misaki, T., and Saiki, I. (1999). Mediastinal lymph node metastasis model by orthotopic intrapulmonary implantation of Lewis lung carcinoma cells in mice. Br. J. Cancer 79, 1121-1126.
Grove, C.S. and Lee, Y.C. (2002). Vascular endothelial growth factor: the key mediator in pleural effusion formation. Curr. Opin. Pulm. Med. 8, 294-301.
Harlozinska, A., Sedlaczek, P., Kulpa, J., Grybos, M., Wojcik, E., Van Dalen, A., and Einarsson, R. (2004). Vascular endothelial growth factor (VEGF) concentration in sera and tumor effusions from patients with ovarian carcinoma. Anticancer Res. 24, 1149-1157.
Hoffman, P.C., Mauer, A.M., and Vokes, E.E. (2000). Lung cancer. Lancet 355, 479-485.
Howard, R.B., Chu, H., Zeligman, B.E., Marcell, T., Bunn, P.A., McLemore, T.L., Mulvin, D.W., Cowen, M.E., and Johnston, M.R. (1991). Irradiated nude rat model for orthotopic human lung cancers. Cancer Res. 51, 3274-3280.
Hu, L., Hofmann, J., Zaloudek, C., Ferrara, N., Hamilton, T., and Jaffe, R.B. (2002). Vascular endothelial growth factor immunoneutralization plus Paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. Am. J. Pathol. 161, 1917-1924.
Kay, M.A., Li, Q., Liu, T.J., Leland, F., Toman, C., Finegold, M., and Woo, S.L. (1992). Hepatic gene therapy: persistent expression of human alpha 1-antitrypsin in mice after direct gene delivery in vivo. Hum. Gene Ther. 3, 641-647.
Kiwaki, K., Kanegae, Y., Saito, I., Komaki, S., Nakamura, K., Miyazaki, J.I., Endo, F., and Matsuda, I. (1996). Correction of ornithine transcarbamylase deficiency in adult spf(ash) mice and in OTC-deficient human hepatocytes with recombinant adenoviruses bearing the CAG promoter. Hum. Gene Ther. 7, 821-830.
Kowalik, T.F., Wing, B., Haskill, J.S., Azizkhan, J.C., Baldwin, A.S., Jr., and Huang, E.S. (1993). Multiple mechanisms are implicated in the regulation of NF-kappa B activity during human cytomegalovirus infection. Proc. Natl. Acad. Sci. U. S. A 90, 1107-1111.
Kraft, A., Weindel, K., Ochs, A., Marth, C., Zmija, J., Schumacher, P., Unger, C., Marme, D., and Gastl, G. (1999). Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer 85, 178-187.
Laegreid, A., Thommesen, L., Jahr, T.G., Sundan, A., and Espevik, T. (1995). Tumor necrosis factor induces lipopolysaccharide tolerance in a human adenocarcinoma cell line mainly through the TNF p55 receptor. J. Biol. Chem. 270, 25418-25425.
Lee, Y., Sohn, W.J., Kim, D.S., and Kwon, H.J. (2004). NF-kappaB- and c-Jun-dependent regulation of human cytomegalovirus immediate-early gene enhancer/promoter in response to lipopolysaccharide and bacterial CpG-oligodeoxynucleotides in macrophage cell line RAW 264.7. Eur. J. Biochem. 271, 1094-1105.
Lee, Y.C. and Light, R.W. (2004). Management of malignant pleural effusions. Respirology. 9, 148-156.
Loser, P., Jennings, G.S., Strauss, M., and Sandig, V. (1998). Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB. J. Virol. 72, 180-190.
Miyanohara, A., Johnson, P.A., Elam, R.L., Dai, Y., Witztum, J.L., Verma, I.M., and Friedmann, T. (1992). Direct gene transfer to the liver with herpes simplex virus type 1 vectors: transient production of physiologically relevant levels of circulating factor IX. New Biol. 4, 238-246.
Moser, T.L., Stack, M.S., Asplin, I., Enghild, J.J., Hojrup, P., Everitt, L., Hubchak, S., Schnaper, H.W., and Pizzo, S.V. (1999). Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc. Natl. Acad. Sci. U. S. A 96, 2811-2816.
Moser, T.L., Stack, M.S., Wahl, M.L., and Pizzo, S.V. (2002). The mechanism of action of angiostatin: can you teach an old dog new tricks? Thromb. Haemost. 87, 394-401.
Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. (1999). Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9-22.
Park, J.O., Lopez, C.A., Gupta, V.K., Brown, C.K., Mauceri, H.J., Darga, T.E., Manan, A., Hellman, S., Posner, M.C., Kufe, D.W., and Weichselbaum, R.R. (2002). Transcriptional control of viral gene therapy by cisplatin. J. Clin. Invest 110, 403-410.
Prosch, S., Staak, K., Stein, J., Liebenthal, C., Stamminger, T., Volk, H.D., and Kruger, D.H. (1995). Stimulation of the human cytomegalovirus IE enhancer/promoter in HL-60 cells by TNFalpha is mediated via induction of NF-kappaB. Virology 208, 197-206.
Sandler, A.B., Johnson, D.H., and Herbst, R.S. (2004). Anti-vascular endothelial growth factor monoclonals in non-small cell lung cancer. Clin. Cancer Res. 10, 4258s-4262s.
Su, W.C., Lai, W.W., Chen, H.H., Hsiue, T.R., Chen, C.W., Huang, W.T., Chen, T.Y., Tsao, C.J., and Wang, N.S. (2003). Combined intrapleural and intravenous chemotherapy, and pulmonary irradiation, for treatment of patients with lung cancer presenting with malignant pleural effusion. A pilot study. Oncology 64, 18-24.
Stewart, A.K., Lassam, N.J., Quirt, I.C., Bailey, D.J., Rotstein, L.E., Krajden, M., Dessureault, S., Gallinger, S., Cappe, D., Wan, Y., Addison, C.L., Moen, R.C., Gauldie, J., and Graham, F.L. (1999). Adenovector-mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: results of a phase 1 clinical trial. Gene Ther. 6, 350-363.
Wang, X., Fu, X., and Hoffman, R.M. (1992a). A patient-like metastasizing model of human lung adenocarcinoma constructed via thoracotomy in nude mice. Anticancer Res. 12, 1399-1401.
Wang, X., Fu, X., Kubota, T., and Hoffman, R.M. (1992b). A new patient-like metastatic model of human small-cell lung cancer constructed orthotopically with intact tissue via thoracotomy in nude mice. Anticancer Res. 12, 1403-1406.
Wilkinson, G.W. and Akrigg, A. (1992). Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. Nucleic Acids Res. 20, 2233-2239.
Yano, S., Herbst, R.S., Shinohara, H., Knighton, B., Bucana, C.D., Killion, J.J., Wood, J., and Fidler, I.J. (2000a). Treatment for malignant pleural effusion of human lung adenocarcinoma by inhibition of vascular endothelial growth factor receptor tyrosine kinase phosphorylation. Clin. Cancer Res. 6, 957-965.
Yano, S., Nishioka, Y., Izumi, K., Tsuruo, T., Tanaka, T., Miyasaka, M., and Sone, S. (1996). Novel metastasis model of human lung cancer in SCID mice depleted of NK cells. Int. J. Cancer 67, 211-217.
Yano, S., Nishioka, Y., Goto, H., and Sone, S. (2003). Molecular mechanisms of angiogenesis in non-small cell lung cancer, and therapeutics targeting related molecules. Cancer Sci. 94, 479-485.
Yano, S., Nokihara, H., Hanibuchi, M., Parajuli, P., Shinohara, T., Kawano, T., and Sone, S. (1997). Model of malignant pleural effusion of human lung adenocarcinoma in SCID mice. Oncol. Res. 9, 573-579.
Yano, S., Shinohara, H., Herbst, R.S., Kuniyasu, H., Bucana, C.D., Ellis, L.M., and Fidler, I.J. (2000b). Production of experimental malignant pleural effusions is dependent on invasion of the pleura and expression of vascular endothelial growth factor/vascular permeability factor by human lung cancer cells. Am. J. Pathol. 157, 1893-1903.
Yeh, P.Y., Yeh, K.H., Chuang, S.E., Song, Y.C., and Cheng, A.L. (2004). Suppression of MEK/ERK signaling pathway enhances cisplatin-induced NF-kappaB activation by protein phosphatase 4-mediated NF-kappaB p65 Thr dephosphorylation. J. Biol. Chem. 279, 26143-26148.
Yeh, P.Y., Chuang, S.E., Yeh, K.H., Song, Y.C., and Cheng, A.L. (2003). Involvement of nuclear transcription factor-kappa B in low-dose doxorubicin-induced drug resistance of cervical carcinoma cells. Biochem. Pharmacol. 66, 25-33.
Yoneda, J., Kuniyasu, H., Crispens, M.A., Price, J.E., Bucana, C.D., and Fidler, I.J. (1998). Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J. Natl. Cancer Inst. 90, 447-454.
Yurochko, A.D., Hwang, E.S., Rasmussen, L., Keay, S., Pereira, L., and Huang, E.S. (1997). The human cytomegalovirus UL55 (gB) and UL75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF-kappaB during infection. J. Virol. 71, 5051-5059.
Zebrowski, B.K., Yano, S., Liu, W., Shaheen, R.M., Hicklin, D.J., Putnam, J.B., Jr., and Ellis, L.M. (1999). Vascular endothelial growth factor levels and induction of permeability in malignant pleural effusions. Clin. Cancer Res. 5, 3364-3368.