簡易檢索 / 詳目顯示

研究生: 羅方妤
Lo, Fang-Yu
論文名稱: 細胞形狀調控肌腱分化
Shape control of tenogenesis
指導教授: 王仰高
Wang, Yang-Kao
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 63
中文關鍵詞: 肌腱分化細胞形狀
外文關鍵詞: Tenogenesis, cell shape
相關次數: 點閱:101下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌腱是一種收縮性結締組織,連接肌肉以及骨頭之間,以幫助關節的活動。過度使
    用以及不正常的修復經常造成慢性發炎而引發疼痛以及行動不便。因此,肌腱再生被
    認為是最具有潛能的治療方式。傳統上可以使用生長因子幫助肌腱再生以及修復,除
    此之外越來越多的研究顯示肌腱微環境中的物理因子的改變也可能誘導肌腱分化,例
    如改變細胞的形狀以及調整胞外基質軟硬度。而傳統的細胞生物學方法,並無法有效
    的改變細胞的形狀。微轉印技術可以控制細胞的形狀和大小,且此技術已經廣泛的應
    用於細胞組織工程。許多研究也證實微轉印技術可以幫助幹細胞分化成不同的細胞。
    因此在本研究中我們欲探討是否能利用生醫微製程中之微轉印技術,透過改變細胞形
    狀而影響肌腱分化。首先我們先確認我們使用的肌腱前驅幹細胞是否具有幹細胞的特
    性,結果顯示肌腱前驅細胞可表現與間質幹細胞相似的表面抗原,同時也具有生長與
    多功分化的潛能。接著我們利用胞外基質覆蓋的線行微轉印圖形建立肌腱分化的系統。
    我們利用免疫染色的方法檢視SCX 以及TNMD 的表現,以評估肌腱分化的結果。
    結果顯示:透過線型微轉印技術可以成功的誘導肌腱的分化,同時我們也發現分化的
    細胞會有較高的核長寬比以及較小的核面積。除此之外我們使用不同長寬比的微轉印
    圖形,發現在拉長的細胞較容易分化成肌腱細胞。接著我們想探討分子的機轉,我們
    發現Rho A 蛋白激酶、肌凝蛋白以及肌動蛋白的抑制劑都會阻斷細胞骨架的排列進
    而降低肌腱細胞分化的能力,同時我們也以核糖核酸干擾技術將β1 整合素做敲減,
    以及使用局部粘著斑激酶阻斷劑降低局部粘著的活性,與上述會得到類似的結果,顯
    示微環境中細胞形狀的改變會影響肌腱細胞的分化。在未來的研究,我們希望能夠更
    進一部探討細胞形狀是如何透過分子的機轉去促進肌腱的分化能力,而這項研究或許
    能夠證實調控細胞形狀可以幫助肌腱的再生醫學的發展

    Tendon tissues are highly prone to injury, often resulting in the development of
    tendinopathy. Therefore, tendon regeneration has emerged as promising therapeutic
    strategy for tendinopathy. The classic method to control tendon cell differentiation is
    the application of soluble factors to wound site for healing and induction of tendon
    repair. In addition to these soluble cues, growing evidence has implied physical cues,
    such as geometric control, is capable of directing stem cell commitment to tendon
    lineage. Unfortunately, there is no available biomedical tool which can properly
    control cell shape without disturbing other cellular behavior. One of the methods to
    control cell geometry is micropatterning, which has been widely used to control cell
    shape to regulate stem cell fate. We therefore, hypothesize that changes of cell shape
    regulate tenogenesis. To confirm this hypothesis, we performed tendon stem
    progenitor cells (TSPCs) to establish tenogenesis in extracellular matrix-coated line
    patterning to investigate tenogenesis by different geometric controls in vitro. We
    found that TSPCs exhibited proliferation ability and expressed surface markers which
    were similar to mesenchymal cells. These TSPCs grown on 20-100/50-100 μm line
    pattern expressed tendon markers scleraxis (SCX) and tenomodulin (TNMD) without
    soluble factor stimulation. TSPCs grown on line pattern showed decreased nucleus
    area and increased aspect ratio. To further elucidate the molecular mechanisms, we
    found that Rho kinase inhibitor Y27632, actin cytoskeleton inhibitors cytochalasin D,
    and myosin inhibitor blebbistatin, disrupted the F-actin organization and hampered
    SCX and TNMD expression in TSPCs on line pattern, suggesting an involvement of Rho-mediated actin organization in tenogenic differentiation. Lastly, using
    microppatterned surface with different aspect ratios, we discovered that tenogenesis
    was found in elongated cells. More importantly, integrin signaling also played
    significant roles in tenogenesis via manipulating integrin b1 expression and inhibition
    of focal adhesion kinase activity. Together, this microenvironmental cue can regulate
    TSPC tenogenesis and may provide us a basic understanding of how geometry
    controls tenogenesis.

    目錄 Abstract......................................... I 中文摘要....................................... III Introduction ...................................... 1 Structures of tendon...................................1 Tendinopathy etiology and treatment...........................1 TSPCs and regulation of tenogenesis ..........................4 Cell geometry and Micropatterning...........................6 ECM, Integrin signaling, RhoA signaling and cytoskeleton..............7 Hypothesis........................................ 9 Materials and Methods................................10 Cell culture.......................................10 MTT Assay.......................................12 Multi-differentiation inductions and their staining methods .............12 Flow cytometry analysis ................................13 Inmunofluorescence staining .............................14 Fabrication of Micropatterned substrate........................15 Transfection of shRNA ................................16 Western blotting.....................................16 Statistic.........................................18 Results ......................................... 19 Characteristics of Tendon stem progeninator cells (TSPCs) .............19 Establishment of tenogenesis on line patterning....................20 Effect of cytoskeleton inhibitors on tenogenesis ...................22 Integrin β1 mediates tenogenesis...........................23 Establishment of Tenogenesis in hMSC. .......................24 Figures.........................................31 Figure 1. Characterization of Tendon stem progeninator cells (TSPCs). ........ 31 Figure 2. Flow cytometry analysis of the cell surface markers on TSPCs. ....... 32 Figure 3. Multi-differenciation potential of TSPCs. .................. 33 Figure 4. A schematic illustration of micropatterning method useing in this study. .. 35 Figure 5. TSPCs grown on micropatterned line surface with different width. .... 36 Figure 6. Establishment of tenogenesis in TSPCs on line pattern. .......... 38 Figure 7. TSPCs grown on micropatterned surfaces with different aspect ratios. ... 40 Figure 8. Rho A signaling inhibitors disrupt F-actin dose dependently. ........ 41 Figure 9. Cytoskeleton disruptors inhibit tenogenesis. ................ 43 Figure 10. Cytochalasin D hampers tenogenesis and nuclear aspect ratio in elongated cell. .............................................. 45 Figure11. Integrin b1 signaling mediates shape-induced tenogenesis. ........ 46 Figure12. Focal adhesion kinase (FAK) signaling is involved in shape-induced tenogenesis. .............................................. 47 Figure 13. Tenogenesis of Mesenchymal stem cell (MSC) on line pattern. ...... 48 Figure14. Model of shape control of tenogenesis. ................... 49 References ....................................... 50

    Abate, M., Gravare-Silbernagel, K., Siljeholm, C., Iorio, A., Amicis, D., Salini, V., Werner,
    S., & Paganelli, R. (2009). Pathogenesis of tendinopathies: inflammation or
    degeneration? Arthritis Research & Therapy, 11(3), 235.
    Alberton, P., Dex, S., Popov, C., Shukunami, C., Schieker, M., & Docheva, D. (2015). Loss
    of tenomodulin results in reduced self-renewal and augmented senescence of
    tendon stem/progenitor cells. Stem Cells and Development, 24(5), 597-609.
    Andres, B. M., & Murrell, G. A. C. (2008). Treatment of Tendinopathy: What works, what
    does not, and what is on the horizon. clinical orthopaedics and related Research,
    466(7), 1539-1554.
    Arnsdorf, E. J., Tummala, P., Kwon, R. Y., & Jacobs, C. R. (2009). Mechanically induced
    osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics.
    Journal of Cell Science, 122(Pt 4), 546-553.
    Attali, R., Warwar, N., Israel, A., Gurt, I., McNally, E., Puckelwartz, M., Glick, B., Nevo,
    Y., Ben-Neriah, Z., & Melki, J. (2009). Mutation of SYNE-1, encoding an essential
    component of the nuclear lamina, is responsible for autosomal recessive
    arthrogryposis. Human Molecular Genetics, 18(18), 3462-3469.
    Bell, R., Boniello, M. R., Gendron, N. R., Flatow, E. L., & Andarawis-Puri, N. (2015).
    Delayed exercise promotes remodeling in sub-rupture fatigue damaged tendons.
    Journal of Orthopaedic Research, 33(6), 919-925.
    Bi, Y., Ehirchiou, D., Kilts, T. M., Inkson, C. A., Embree, M. C., Sonoyama, W., Li, L.,
    Leet, A. I., Seo, B.M., Zhang, L., Shi, S., & Young, M. F. (2007). Identification of
    tendon stem/progenitor cells and the role of the extracellular matrix in their niche.
    Nature Medicine, 13(10), 1219-1227.
    Boudreau, N. J., & Jones, P. L. (1999). Extracellular matrix and integrin signalling: the
    shape of things to come. The Biochemical Journal, 339 ( Pt 3), 481-488.
    Brandau, O., Meindl, A., Fässler, R., Aszódi, A., Brandau, O., Meindl, A., Fässler, R., &
    Aszódi, A. (2001). A novel gene, tendin, is strongly expressed in tendons and
    ligaments and shows high homology with chondromodulin-I. Developmental
    Dynamics. 221(1), 72-80
    Campbell, I. D., & Humphries, M. J. (2011). Integrin Structure, Activation, and
    Interactions. Cold Spring Harbor Perspectives in Biology, 3(3), pii: a004994
    Chahal, J., Thiel, G. S., Mall, N., Heard, W., Bach, B. R., Cole, B. J., Nicholson, G. P.,
    Verma, N. N., Whelan, D. B., & Romeo, A. A. (2012). The Role of Platelet-Rich
    Plasma in Arthroscopic Rotator Cuff Repair: A Systematic Review With
    Quantitative Synthesis. Arthroscopy: The Journal of Arthroscopic & Related
    Surgery, 28(11), 1718-1727.
    Charrasse, S., Meriane, M., Comunale, F., Blangy, A., & Gauthier-Rouvière, C. (2002). Ncadherin–
    dependent cell–cell contact regulates Rho GTPases and β-catenin
    localization in mouse C2C12 myoblasts. The Journal of Cell Biology, 158(5), 953-
    965.
    Chen, Yin, Z., Chen, J.L., Shen, W.l., Liu, H.H., Tang, Q.M., Fang, Z., Lu, L.R., J, J., &
    Ouyang, H.W. (2012). Force and scleraxis synergistically promote the commitment
    of human ES cells derived MSCs to tenocytes. Scientific Reports, 2, 977.
    Chen, C. S., Alonso, J. L., Ostuni, E., Whitesides, G. M., & Ingber, D. E. (2003). Cell
    shape provides global control of focal adhesion assembly. Biochemical and
    Biophysical Research Communications, 307(2), 355-361.
    Chen, C. S., Tan, J., & Tien, J. (2004). Mechanotransduction at cell-matrix and cell-cell
    contacts. Annual Review of Biomedical Engineering, 6, 275-302.
    Chen, L., Liu, J. P., Tang, K. L., Wang, Q., Wang, G. D., Cai, X. H., & Liu, X. M. (2014).
    Tendon derived stem cells promote platelet-rich plasma healing in collagenaseinduced
    rat achilles tendinopathy. Cellular Physiology and Biochemistry, 34(6),
    2153-2168.
    Chen, X., Yin, Z., Chen, J.L., Shen, W.L., Liu, H.H., Tang, Q.M., Fang, Z., Lu, L.R., Ji, J.,
    & Ouyang, H.W. (2012). Force and scleraxis synergistically promote the
    commitment of human ES cells derived MSCs to tenocytes. Scientific Reports, 2,
    977.
    Chrzanowska-Wodnicka, M., & Burridge, K. (1996). Rho-stimulated contractility drives
    the formation of stress fibers and focal adhesions. The Journal of Cell Biology.
    141(2), 539-51
    DeMali, K. A., & Burridge, K. (2003). Coupling membrane protrusion and cell adhesion.
    Journal of Cell Science. 116(pt12), 2389-97.
    Deschaseaux, F., & Charbord, P. (2000). Human marrow stromal precursors are alpha 1
    integrin subunit-positive. Journal of Cellular Physiology, 184(3), 319-325.
    Dhawan, J., & Helfman, D. M. (2004). Modulation of acto-myosin contractility in skeletal
    muscle myoblasts uncouples growth arrest from differentiation. Journal of Cell
    Science. 117(17),3735-48.
    Docheva, D., Hunziker, E. B., Fässler, R., & Brandau, O. (2005). Tenomodulin Is
    Necessary for Tenocyte Proliferation and Tendon Maturation. Molecular Cell
    Biology, 25(2), 699-705.
    Docheva, D., Hunziker, E. B., Fässler, R., Brandau, O., Docheva, D., Hunziker, E. B.,
    Fässler, R., & Brandau, O. (2005). Tenomodulin Is Necessary for Tenocyte
    Proliferation and Tendon Maturation. Molecular Cell Biology. 25(2), 699-705
    Du, J., Chen, X., Liang, X., Zhang, G., Xu, J., He, L., Zhan, Q., Feng, X.-Q., Chien, S., &
    Yang, C. (2011). Integrin activation and internalization on soft ECM as a
    mechanism of induction of stem cell differentiation by ECM elasticity. Proceedings
    of the National Academy of Sciences, 108(23), 9466-9471.
    Du, J., Zu, Y., Li, J., Du, S., Xu, Y., Zhang, L., Jiang, L., Wang, Z., Chien, S., & Yang, C.
    (2016). Extracellular matrix stiffness dictates Wnt expression through integrin
    pathway. Scientific Reports, 6(1), 20395.
    Engler, A. J., Sen, S., Sweeney, L. H., & Discher, D. E. (2006). Matrix Elasticity Directs
    Stem Cell Lineage Specification. Cell, 126(4), 677-689.
    Evans, C. H. (2011). Barriers to the Clinical Translation of Orthopedic Tissue Engineering.
    Tissue Engineering Part B: Reviews, 17(6), 437-441.
    Fu, J., Wang, Y.K., Yang, M. T., Desai, R. A., Yu, X., Liu, Z., & Chen, C. S. (2011).
    Mechanical regulation of cell function with geometrically modulated elastomeric
    substrates. Nature Methods, 7(9), 733-736.
    Gao, L., McBeath, R., Chen, C. S., Gao, L., McBeath, R., & Chen, C. S. (2010). Stem Cell
    Shape Regulates a Chondrogenic Versus Myogenic Fate Through Rac1 and NCadherin.
    Stem Cells. 28(3), 564-72.
    Garner, W. L., McDonald, J. A., Koo, M., Kuhn, C., 3rd, & Weeks, P. M. (1989).
    Identification of the collagen-producing cells in healing flexor tendons. Plastic and
    Reconstructive Surgery, 83(5), 875-879.
    Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane
    crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nature reviews.
    Molecular Cell Biology, 2(11), 793-805.
    Gelberman, R. H., Siegel, D. B., Woo, S. L., Amiel, D., Takai, S., & Lee, D. (1991).
    Healing of digital flexor tendons: importance of the interval from injury to repair. A
    biomechanical, biochemical, and morphological study in dogs. Jounal of Bone and
    Joint Surgury, 73(1), 66-75.Gronthos, S., Zannettino, A. C. W., Hay, S. J., Shi, S., Graves, S. E., Kortesidis, A., &
    Simmons, P. J. (2003). Molecular and cellular characterisation of highly purified
    stromal stem cells derived from human bone marrow. Journal of Cell Science,
    116(9), 1827-1835.
    Grove, J. R. (2008). Autograft, allograft and xenograft options in the treatment of neglected
    achilles tendon ruptures: a historical review with illustration of surgical repair. The
    Foot & Ankle Journal, 1(5). 1
    Heo, S.J., Driscoll, T. P., Thorpe, S. D., Nerurkar, N. L., Baker, B. M., Yang, M. T., Chen,
    C. S., Lee, D. A., & Mauck, R. L. (2016). Differentiation alters stem cell nuclear
    architecture, mechanics, and mechano-sensitivity. eLife, 5.
    Higuchi, A., Ling, Q.D. D., Chang, Y., Hsu, S.T. T., & Umezawa, A. (2013). Physical cues
    of biomaterials guide stem cell differentiation fate. Chemical Reviews, 113(5),
    3297-3328.
    Hill, C. S., Wynne, J., & Treisman, R. (1995). The Rho family GTPases RhoA, Rac1, and
    CDC42Hs regulate transcriptional activation by SRF. Cell, 81(7), 1159-1170.
    Hocking, D. C., Sottile, J., & McKeown-Longo, P. J. (1998). Activation of distinct
    alpha5beta1-mediated signaling pathways by fibronectin's cell adhesion and matrix
    assembly domains. The Journal of Cell Biology, 141(1), 241-253.
    Hu, J. J., Yin, Z., Shen, W. L., Xie, Y. B., Zhu, T., Lu, P., Cai, Y. Z., Kong, M. J., Heng, B.,
    Zhou, Y. T., Chen, W. S., Chen, X., & Ouyang, H. W. (2016). Pharmacological
    Regulation of In Situ Tissue Stem Cells Differentiation for Soft Tissue Calcification
    Treatment. Stem Cells, 34(4), 1083-1096.
    Huveneers, S., & Danen, E. H. J. (2009). Adhesion signaling – crosstalk between integrins,
    Src and Rho. Journal of Cell Science, 122(8), 1059-1069.
    Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110(6),673-687.
    Ingber, D. E. (2006). Mechanical control of tissue morphogenesis during embryological
    development. The International journal of Developmental Biology, 50(2-3), 255-
    266.
    Khan, K. M., Cook, J. L., Bonar, F., Harcourt, P., & Astrom, M. (1999). Histopathology of
    common tendinopathies. Update and implications for clinical management. Sports
    Medine, 27(6), 393-408.
    Khatau, S. B., Hale, C. M., Stewart-Hutchinson, P. J., Patel, M. S., Stewart, C. L., Searson,
    P. C., Hodzic, D., & Wirtz, D. (2009). A perinuclear actin cap regulates nuclear
    shape. Proceedings of the National Academy of Sciences of the United States of
    America, 106(45), 19017-19022.
    Kilian, K. A., Bugarija, B., Lahn, B. T., & Mrksich, M. (2010). Geometric cues for
    directing the differentiation of mesenchymal stem cells. Proceedings of the
    National Academy of Sciences of the United States of America, 107(11), 4872-
    4877.
    Kim, S.J. J., Lee, J. K., Kim, J. W., Jung, J.W. W., Seo, K., Park, S.B. B., Roh, K.H. H.,
    Lee, S.R. R., Hong, Y. H., Kim, S. J., Lee, Y.S. S., Kim, S. J., & Kang, K.-S. S.
    (2008). Surface modification of polydimethylsiloxane (PDMS) induced
    proliferation and neural-like cells differentiation of umbilical cord blood-derived
    mesenchymal stem cells. Journal of materials science. Materials in Medicine, 19(8),
    2953-2962.
    Kirchgesner, T., Larbi, A., Omoumi, P., Malghem, J., Zamali, N., Manelfe, J., Lecouvet, F.,
    Berg, B., Djebbar, S., & Dallaudière, B. (2014). Drug-induced tendinopathy: From
    physiology to clinical applications. Joint Bone Spine, 81(6), 485-492.
    Klepps, S., Bishop, J., Lin, J., Cahlon, O., Strauss, A., Hayes, P., & Flatow, E. L. (2004).Prospective Evaluation of the Effect of Rotator Cuff Integrity on the Outcome of
    Open Rotator Cuff Repairs. American Journal of Sports Medicine, 32(7), 1716-
    1722.
    Knobloch, K. (2008). The role of tendon microcirculation in Achilles and patellar
    tendinopathy. Journal of Orthopaedic Surgery and Research, 3(1), 1-13.
    Kozma, R., Ahmed, S., Best, A., & Lim, L. (1995). The Ras-related protein Cdc42Hs and
    bradykinin promote formation of peripheral actin microspikes and filopodia in
    Swiss 3T3 fibroblasts. Molecular Cell Biology, 15(4), 1942-1952.
    Krueger-Franke, M., Siebert, C. H., & Scherzer, S. (1995). Surgical treatment of ruptures
    of the Achilles tendon: a review of long-term results. British Journal of Sports
    Medicine, 29(2), 121-125.
    Lee, J., Abdeen, A. A., & Kilian, K. A. (2014). Rewiring mesenchymal stem cell lineage
    specification by switching the biophysical microenvironment. Scientific Reports,
    4(1), 5188.
    Lee, J., Abdeen, A. A., Tang, X., Saif, T. A., & Kilian, K. A. (2015). Geometric guidance of
    integrin mediated traction stress during stem cell differentiation. Biomaterials, 69,
    174-183.
    Lehnert, D., Wehrle-Haller, B., David, C., Weiland, U., Ballestrem, C., Imhof, B. A., &
    Bastmeyer, M. (2004). Cell behaviour on micropatterned substrata: limits of
    extracellular matrix geometry for spreading and adhesion. Journal of Cell Science,
    117(1), 41-52.
    Lejard, Blais, F., Guerquin, M.J., Bonnet, A., Bonnin, M.A., Havis, E., Malbouyres, M.,
    Bidaud, C., Maro, G., Gilardi-Hebenstreit, P., Rossert, J., Ruggiero, F., & Duprez,
    D. (2011). EGR1 and EGR2 Involvement in Vertebrate Tendon Differentiation.
    Journal of Biological Chemistry, 286(7), 5855-5867
    Lejard, V., Blais, F., Guerquin, M. J., Bonnet, A., Bonnin, M. A., Havis, E., Malbouyres,
    M., Bidaud, C. B., Maro, G., Gilardi-Hebenstreit, P., Rossert, J., Ruggiero, F., &
    Duprez, D. (2011). EGR1 and EGR2 involvement in vertebrate tendon
    differentiation. Journal of Biological Chemistry, 286(7), 5855-5867.
    Li, H., Wen, F., Wong, Y. S., Boey, F. Y., Subbu, V. S., Leong, D. T., Ng, K. W., Ng, G. K.,
    & Tan, L. P. (2012). Direct laser machining-induced topographic pattern promotes
    up-regulation of myogenic markers in human mesenchymal stem cells. Acta
    Biomaterialia, 8(2), 531-539.
    Li, H.Y., & Hua, Y.H. (2016). Achilles Tendinopathy: Current concepts about the basic
    science and clinical treatments. BioMed Research International, 2016, 1-9.
    Libotte, T., Zaim, H., & Abraham, S. (2005). Lamin A/C–dependent localization of
    Nesprin-2, a giant scaffolder at the nuclear envelope. Molecular Biology of the
    Cell. 16(7), 3411-24
    Liu, Al-Shaikh, R. A., Panossian, V., Finerman, G. A., & Lane, J. M. (1997). Estrogen
    affects the cellular metabolism of the anterior cruciate ligament. A potential
    explanation for female athletic injury. American Journal of Sports Medicine, 25(5),
    704-709.
    Liu, C.F., Aschbacher-Smith, L., Barthelery, N. J., Dyment, N., Butler, D., & Wylie, C.
    (2011). What we should know before using tissue engineering techniques to repair
    injured tendons: a developmental biology perspective. Tissue Engineering. Part B,
    Reviews, 17(3), 165-176.
    Liu, H., Zhang, C., Zhu, S., Lu, P., Zhu, T., Gong, X., Zhang, Z., Hu, J., Yin, Z., Heng, B.
    C., Chen, X., & Ouyang, H. W. (2015). Mohawk promotes the tenogenesis of
    mesenchymal stem cells through activation of the TGFβ signaling pathway. Stem
    Cells, 33(2), 443-455.Liu, J., Tao, X., Chen, L., Han, W., Zhou, Y., & Tang, K. (2015). CTGF positively regulates
    BMP12 induced tenogenic differentiation of tendon stem cells and signaling.
    Cellular Physiology and Biochemistry, 35(5), 1831-1845.
    Liu, L., Zong, C., Li, B., Shen, D., Tang, Z., Chen, J., Zheng, Q., Tong, X., Gao, C., &
    Wang, J. (2014). The interaction between 1 integrins and ERK1/2 in osteogenic
    differentiation of human mesenchymal stem cells under fluid shear stress modelled
    by a perfusion system. Journal of Tissue Engineering and Regenerative Medicine,
    8(2), 85-96.
    Lui, P. (2015). Stem cell technology for tendon regeneration: current status, challenges,
    and future research directions. Stem Cells and Cloning: Advances and Applications,
    Volume 8, 163-174.
    Mackey, A. L., Heinemeier, K. M., Koskinen, S. O., & Kjaer, M. (2008). Dynamic
    adaptation of tendon and muscle connective tissue to mechanical loading.
    Connective Tissue Research, 49(3), 165-168.
    Maffulli, N., Sharma, P., & Luscombe, K. L. (2004). Achilles tendinopathy: aetiology and
    management. Journal of the Royal Society of Medicine, 97(10), 472-476.
    Maffulli, N., Wong, J., & Almekinders, L. C. (2003). Types and epidemiology of
    tendinopathy. Clinics in Sports Medicine, 22(4), 675-692.
    Maniotis, A. J., Chen, C. S., & Ingber, D. E. (1997). Demonstration of mechanical
    connections between integrins, cytoskeletal filaments, and nucleoplasm that
    stabilize nuclear structure. Proceedings of the National Academy of Sciences of the
    United States of America, 94(3), 849-854.
    Mao, X., Gavara, N., & Song, G. (2015). Nuclear Mechanics and Stem Cell
    Differentiation. Stem Cell Reviews and Reports, 11(6), 804-812.
    McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cellshape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment.
    Developmental Cell, 6(4), 483-495.
    McNeilly, C. M., Banes, A. J., Benjamin, M., & Ralphs, J. R. (1996). Tendon cells in vivo
    form a three dimensional network of cell processes linked by gap junctions. Journal
    of Anatomy, 189(3), 593.
    Murchison, N. D., Price, B. A., Conner, D. A., Keene, D. R., Olson, E. N., Tabin, C. J., &
    Schweitzer, R. (2007). Regulation of tendon differentiation by scleraxis
    distinguishes force-transmitting tendons from muscle-anchoring tendons.
    Development, 134(14), 2697-2708.
    Nobes, C. D., & Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of
    multimolecular focal complexes associated with actin stress fibers, lamellipodia,
    and filopodia. Cell, 81(1), 53-62.
    Pankov, R., Cukierman, E., Katz, B.Z., Matsumoto, K., Lin, D. C., Lin, S., Hahn, C., &
    Yamada, K. M. (2000). Integrin dynamics and matrix assembly tensin-dependent
    translocation of α5β1 integrins promotes early fibronectin fibrillogenesis. The
    Journal of Cell Biology, 148(5), 1075-1090.
    Parker, K. K., Tan, J., Chen, C. S., & Tung, L. (2008). Myofibrillar architecture in
    engineered cardiac myocytes. Circulation Research. 103(4), 340-2
    Popov, C., Burggraf, M., Kreja, L., Ignatius, A., Schieker, M., & Docheva, D. (2015).
    Mechanical stimulation of human tendon stem/progenitor cells results in
    upregulation of matrix proteins, integrins and MMPs, and activation of p38 and
    ERK1/2 kinases. BMC Molecular Biology, 16(1), 1-11.
    Puckelwartz, M. J., Kessler, E. J., Kim, G., Dewitt, M. M., Zhang, Y., Earley, J. U.,
    Depreux, F. F., Holaska, J., Mewborn, S. K., Pytel, P., & McNally, E. M. (2010).
    Nesprin-1 mutations in human and murine cardiomyopathy. Journal of Molecularand Cellular Cardiology, 48(4), 600-608.
    Rajgor, D., & Shanahan, C. M. (2013). Nesprins: from the nuclear envelope and beyond.
    Expert Reviews in Molecular Medicine, 15, e5
    Rodríguez, P. J., González, M., Ríos, S., & Cambiazo, V. (2004). Cytoskeletal organization
    of human mesenchymal stem cells (MSC) changes during their osteogenic
    differentiation. Journal of Cellular Biochemistry, 93(4), 721-731.
    Ruiz, S., & Chen, C. S. (2006). Microcontact printing: A tool to pattern. Soft Matter, 168-
    177.
    Schwartz, M. A., & Ginsberg, M. H. (2002). Networks and crosstalk: integrin signalling
    spreads. Nature Cell Biology, 4(4).
    Scott, A., Huisman, E., & Khan, K. (2011). Conservative treatment of chronic Achilles
    tendinopathy. Canadian Medical Association Journal, 183(10), 1159-1165.
    Sharma, P., & Maffulli, N. (1997). Biology of tendon injury: healing, modeling and
    remodeling. Jounal of Musculoskelet Neuronal Interaction, 6(2), 181-190.
    Shih, Y.R. V., Tseng, K.F., Lai, H.Y., Lin, C.H., & Lee, O. K. (2011). Matrix stiffness
    regulation of integrin-mediated mechanotransduction during osteogenic
    differentiation of human mesenchymal stem cells. Journal of Bone and Mineral
    Research, 26(4), 730-738.
    Shukunami, C., Takimoto, A., Oro, M., Hiraki, Y., Shukunami, C., Takimoto, A., Oro, M.,
    & Hiraki, Y. (2006). Scleraxis positively regulates the expression of tenomodulin, a
    differentiation marker of tenocytes. Developmental Biology.
    Sordella, R., Jiang, W., Chen, G.C., Curto, M., & Settleman, J. (2003). Modulation of Rho
    GTPase Signaling Regulates a Switch between Adipogenesis and Myogenesis. Cell,
    113(2), 147-158.
    Sosa, B. A., Rothballer, A., Kutay, U., & Schwartz, T. U. (2012). LINC complexes form bybinding of three KASH peptides to domain interfaces of trimeric SUN proteins.
    Cell, 149(5), 1035-1047.
    Spatz, J. P., & Geiger, B. (2007). Molecular engineering of cellular environments: cell
    adhesion to nano-digital surfaces. Methods in Cell biology, 83, 89-111.
    Takano, H., Komuro, I., Oka, T., Shiojima, I., Hiroi, Y., Mizuno, T., & Yazaki, Y. (1998).
    The Rho Family G Proteins Play a Critical Role in Muscle Differentiation.
    Molicular Cell Biology, 18(3), 1580-1589.
    Taranum, S., Sur, I., Müller, R., Lu, W., Rashmi, R. N., Munck, M., Neumann, S.,
    Karakesisoglou, I., & Noegel, A. A. (2012). Cytoskeletal Interactions at the Nuclear
    Envelope Mediated by Nesprins. International Journal of Cell Biology, 2012,
    736524.
    Tay, C., Yu, H., Pal, M., Leong, W., Tan, N., Ng, K., Leong, D., & Tan, L. (2010).
    Micropatterned matrix directs differentiation of human mesenchymal stem cells
    towards myocardial lineage. Experimental Cell Research, 316(7), 1159-1168.
    Théry, M. (2010). Micropatterning as a tool to decipher cell morphogenesis and functions.
    Journal of Cell Science, 123(24), 4201-4213.
    Théry, M., Pépin, A., Dressaire, E., Chen, Y., & Bornens, M. (2006). Cell distribution of
    stress fibres in response to the geometry of the adhesive environment. Cell Motility
    and the Cytoskeleton, 63(6), 341-355.
    Via, A., Papa, G., Oliva, F., & Maffulli, N. (2016). Tendinopathy. Current Physical
    Medicine and Rehabilitation Reports, 4(1), 50-55.
    Voleti, P. B., Buckley, M. R., & Soslowsky, L. J. (2012). Tendon Healing: Repair and
    Regeneration. Annual Review of Biomedical Engineering, 14(1), 47-71.
    Wang, H., Rusielewicz, T., Tewari, A., Leitman, E. M., Einheber, S., & Melendez-Vasquez,
    C. V. (2012). Myosin II is a negative regulator of oligodendrocyte morphologicaldifferentiation. Journal of Neuroscience Research, 90(8), 1547-1550
    Wang, W., Li, J., Wang, K., Zhang, Z., Zhang, W., Zhou, G., Cao, Y., Ye, M., Zou, H., &
    Liu, W. (2015). Induction of predominant tenogenic phenotype in human dermal
    fibroblasts via synergistic effect of TGF-β and elongated cell shape. American
    journal of physiology. Cell Physiology, 310(5), C357-72
    Wang, Y. K., Yu, X., Cohen, D. M., Wozniak, M. A., Yang, M. T., Gao, L., Eyckmans, J., &
    Chen, C. S. (2012). Bone morphogenetic protein-2-induced signaling and
    osteogenesis is regulated by cell shape, RhoA/ROCK, and cytoskeletal tension.
    Stem Cells and Development, 21(7), 1176-1186.
    Wilhelmsen, K., Litjens, S. H. M., & Kuikman, I. (2005). Nesprin-3, a novel outer nuclear
    membrane protein, associates with the cytoskeletal linker protein plectin. The
    Journal of Cell Biology 171 (5), 799-810
    Xu, B., Song, G., Ju, Y., Li, X., Song, Y., & Watanabe, S. (2012). RhoA/ROCK,
    cytoskeletal dynamics, and focal adhesion kinase are required for mechanical
    stretch-induced tenogenic differentiation of human mesenchymal stem cells.
    Journal of Cellular Physiology, 227(6), 2722-2729.
    Yang, Y., Relan, N. K., Przywara, D. A., & Schuger, L. (1999). Embryonic mesenchymal
    cells share the potential for smooth muscle differentiation: myogenesis is controlled
    by the cell's shape. Development 126(13), 3027-33.
    Yim, E., Darling, E. M., Kulangara, K., Guilak, F., & Leong, K. W. (2010).
    Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and
    mechanical properties of human mesenchymal stem cells. Biomaterials, 31(6),
    1299-1306.
    Yin, Z., Chen, X., Chen, J. L., Shen, W. L., Hieu Nguyen, T. M., Gao, L., & Ouyang, H. W.
    (2010). The regulation of tendon stem cell differentiation by the alignment ofnanofibers. Biomaterials, 31(8), 2163-2175.
    Zhang, C., Yuan, H., Liu, H., Chen, X., Lu, P., Zhu, T., Yang, L., Yin, Z., Heng, B., Zhang,
    Y., & Ouyang, H. (2015). Well-aligned chitosan-based ultrafine fibers committed
    teno-lineage differentiation of human induced pluripotent stem cells for Achilles
    tendon regeneration. Biomaterials, 53, 716-730.
    Zhang, D., Sun, M. B., Lee, J., Abdeen, A. A., & Kilian, K. A. (2016). Cell shape and the
    presentation of adhesion ligands guide smooth muscle myogenesis. Journal of
    Biomedical Materials Research Part A, 104(5), 1212-1220.
    Zhang, J., & Wang, J. H. (2010). Characterization of differential properties of rabbit tendon
    stem cells and tenocytes. BMC Musculoskelet Disorders, 11, 10.
    Zhang, Q., Bethmann, C., Worth, N. F., Davies, J. D., Wasner, C., Feuer, A., Ragnauth, C.
    D., Yi, Q., Mellad, J. A., Warren, D. T., Wheeler, M. A., Ellis, J. A., Skepper, J. N.,
    Vorgerd, M., Schlotter-Weigel, B., Weissberg, P. L., Roberts, R. G., Wehnert, M., &
    Shanahan, C. M. (2007). Nesprin-1 and -2 are involved in the pathogenesis of
    Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity.
    Human Molecular Genetics, 16(23), 2816-2833.
    Zhu, J., Li, J., Wang, B., Zhang, W. J., Zhou, G., Cao, Y., & Liu, W. (2010). The regulation
    of phenotype of cultured tenocytes by microgrooved surface structure.
    Biomaterials, 31(27), 6952-6958.
    Zwolanek, D., Flicker, M., Kirstätter, E., Zaucke, F., van Osch, G., & Erben, R. G. (2015).
    β1 Integrins Mediate Attachment of Mesenchymal Stem Cells to Cartilage Lesions.
    BioResearch Open Access, 4(1), 39-53.

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE