簡易檢索 / 詳目顯示

研究生: 王薇慈
Wang, Wei-Tzu
論文名稱: 結合和弦聲音與機器學習區別精神分裂患者和一般健康者之聲音刺激腦電位
Differentiation between Auditory Event-Related Potentials from Patients with Schizophrenia and Normal Subjects Based on Musical Stimuli and Machine Learning
指導教授: 梁勝富
Liang, Sheng-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 69
中文關鍵詞: 精神分裂症心理精神狀態評估聽覺事件相關電位機器學習
外文關鍵詞: Schizophrenia, DSM-V, Auditory event-related potential (AEP), machine learning
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 精神分裂症(Schizophrenia) 是一種慢性的腦部疾病,全球約有1%的人口患有此疾病,而15至45歲的年輕人口為較易發的族群。一般來說,由於精神分裂症患者對於真實與幻覺的區別是有障礙的,因此對他們在社會適應及職場表現有嚴重的影響。迄今,精神分裂症的臨床診斷主要是基於患者的行為紀錄及其心理精神狀態評估 (DSM-V)。 此篇論文的目的為透過客觀的生理的資訊進行精神分裂症患者與一般健康者的分類,並建立有效率的分類系統。本研究的受測者分為兩個族群:接受治療中的十二位精神分裂症患者和十二位一般健康者。在聽覺事件相關電位的實驗中,隨機播放和弦刺激與音程刺激,藉由觀察大腦各電極事件相關電位中N1與P2的統計結果,將有統計差異的電極進行不同組合;並將N1與P2的振幅作為特徵,結果發現一些重要的電極位置;其相關大腦位置位於前額葉與顳葉,這些大腦腦區與精神分裂症患者的腦部功能缺陷可能存有相關性。測試結果顯示,組合具有統計差異的特定電極 (F3, F4, T3; F3, F7, T4; F3, F8, T4 三種組合方式) 被和絃刺激與音程刺激所誘發的N1振幅作為特徵時,並採用Leave-One-Out交叉驗證與LDA線性分類器,可達到91.67%之準確率。結果顯示在特定電極位置的N1振幅可作為有效特徵於區別精神分裂症患者與一般健康者。本研究利用統計方法選取有鑑別力之電極位置與特徵,結合機器學習,發展出可有效分辨精神分裂症患者及一般健康者之系統。此系統除了提供分類的高準確率,亦透過分類結果提供未來臨床診斷與更深入的研究相關資訊做為參考。

    Schizophrenia is a chronic brain disorder. 1% population worldwide have this illness approximately and it typically occurred in young adulthood (15~45 year). Generally, schizophrenia patients usually could not identify reality and hallucination and it would make social and occupational dysfunctions. Until now, diagnosis of schizophrenia is based on observed behavior and the patient's reported experiences (Diagnostic and Statistical Manual of Mental Disorders, DSM-V).
    The aim of this study is to evaluate the feasibility of classifying schizophrenia and healthy people by analyzing their objective physiological information, and construct an efficient classification procedure. In this thesis, the auditory even-related potentials (AEP) experiment were recorded from 12 schizophrenia patients and 12 healthy people. The stimuli was presented randomly by chord stimuli and interval stimuli, by observing the statistical difference of ERPs results in N1 and P2 components of each musical stimuli type in each group and selected the discrepant electrode sites for different combination, the amplitude of N1 and P2 of the specific electrode sites were taken as features for classification, and some specific electrode sites were found to be important through the classification result. The related locations of those electrode sites are roughly at frontal and temporal lobes in brain, which may be connected with brain functions impairment in Schizophrenia. Finally, the extracted features were fed into the LDA for classification. Accuracy of the proposed method can reach 91.67% through leave-one-out cross validation when combining N1 amplitude at statistically discrepant electrode sites (i.e. F3, F4, T3; F3, F7, T4; F3, F8, T4 three combination modes) as feature. The result showed that N1 amplitude of specific electrode sites supply useful features in Schizophrenia classification. In this thesis, statistical techniques combined with machine learning were used to select discriminating electrode sites and features for classification, and to develop an efficient and effective classification system. Furthermore, information observed through the classification result can be provided for the clinical diagnosis and deeper analysis in the future.

    摘要 I Abstract III 誌謝 V Contents VI List of Figures VIII List of Tables X Chapter 1 Introduction 1 1.1 Research Background 1 1.1.1 Schizophrenia 1 1.1.2 Musical Terms 2 1.1.3 The Auditory Event-Related Potential (AEP) 5 1.1.3 Current Researches of Schizophrenia 6 1.2 Research Motivation 7 1.3 Research Goal 7 Chapter 2 Materials and Method 8 2.1 Data Collection 8 2.1.1 Environment of Human Music Perception Experiment 8 2.1.2 Subjects 10 2.1.3 Stimuli 12 2.1.4 ERPs Experiment 13 2.1.5 EEG Recordings and Data Analysis 14 2.2 Electrode Site Selection 15 2.2.1 Power Difference of ERPs in Different Brain Areas of Two Groups 17 2.2.2 Hemispheric Difference by electrode to electrode 20 2.3 Feature Extraction 28 2.3.1 ERPs of Different Brain Hemisphere 29 2.3.2 N1 Amplitude of Different Electrode Site 29 2.3.3 P2 Amplitude of Different Electrode Site 30 2.4 Classification 31 2.4.1 Classifier 31 Chapter 3 Results 32 3.1 Classifier Performance 32 3.2 Performance of Schizophrenia Patients 34 3.2.1 Classification Performance of Average N1/P2 Amplitude of All Electrode Sites 34 3.2.2 Classification Performance of different Brain Hemisphere 35 3.2.3 Classification Performance of Single Electrode Site 37 3.2.4 Classification Performance of Different Combinations of Electrode Sites 39 Chapter 4 Discussion 43 4.1 Classification Accuracy 44 4.2 Different Combination Comparison 46 4.3 Important Electrode Sites 49 Chapter 5 Conclusion 52 Future Work 53 Appendix I – PANSS 54 Appendix II – Distribution of Discriminative Scores of 24-Round Leave-One-Out Cross Validation of LDA 55 Appendix III – Distribution Diagrams of Three Best Combination Modes 57 Reference 62

    Ahmadlou, Mehran, Adeli, Hojjat, & Adeli, Amir. (2012). Fractality analysis of frontal brain in major depressive disorder. International Journal of Psychophysiology, 85(2), 206-211.
    Ananth, Hema, Popescu, Ioana, Critchley, Hugo D, Good, Catriona D, Frackowiak, Richard SJ, & Dolan, Raymond J. (2002). Cortical and subcortical gray matter abnormalities in schizophrenia determined through structural magnetic resonance imaging with optimized volumetric voxel-based morphometry. American Journal of Psychiatry, 159(9), 1497-1505.
    Andreasen, NancyC. (1995). Symptoms, signs, and diagnosis of schizophrenia. The Lancet, 346(8973), 477-481.
    Antonova, Elena, Kumari, Veena, Morris, Robin, Halari, Rozmin, Anilkumar, A, Mehrotra, Ravi, & Sharma, Tonmoy. (2005). The relationship of structural alterations to cognitive deficits in schizophrenia: a voxel-based morphometry study. Biological psychiatry, 58(6), 457-467.
    Arnsten, Amy FT, & Rubia, Katya. (2012). Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 51(4), 356-367.
    Asami, Takeshi, Bouix, Sylvain, Whitford, Thomas J, Shenton, Martha E, Salisbury, Dean F, & McCarley, Robert W. (2012). Longitudinal loss of gray matter volume in patients with first-episode schizophrenia: DARTEL automated analysis and ROI validation. Neuroimage, 59(2), 986-996.
    Barkus E, Stirling J, Hopkins RS, & S, Lewis. (2005.). The functional imaging of non-clinical auditory
    hallucinations in non-clinical high schizotypes. . Paper presented at the annual convention of the International Congress on Schizophrenia Research, Savannah,Georgia, USA; .
    Bassett, Danielle S, Nelson, Brent G, Mueller, Bryon A, Camchong, Jazmin, & Lim, Kelvin O. (2012). Altered resting state complexity in schizophrenia. Neuroimage, 59(3), 2196-2207.
    Beam, William, Borckardt, Jeffrey J, Reeves, Scott T, & George, Mark S. (2009). An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain stimulation, 2(1), 50-54.
    Bestelmeyer, Patricia EG, Latinus, Marianne, Bruckert, Laetitia, Rouger, Julien, Crabbe, Frances, & Belin, Pascal. (2012). Implicitly perceived vocal attractiveness modulates prefrontal cortex activity. Cerebral Cortex, 22(6), 1263-1270.
    Bigand, Emmanuel, Parncutt, Richard, & Lerdahl, Fred. (1996). Perception of musical tension in short chord sequences: The influence of harmonic function, sensory dissonance, horizontal motion, and musical training. Perception & Psychophysics, 58(1), 125-141.
    Cachia, Arnaud, Paillère-Martinot, Marie-Laure, Galinowski, André, Januel, Dominique, de Beaurepaire, Renaud, Bellivier, Frank, . . . Duchesnay, Edouard. (2008). Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations. Neuroimage, 39(3), 927-935.
    Calhoun, Vince D, Maciejewski, Paul K, Pearlson, Godfrey D, & Kiehl, Kent A. (2008). Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Human brain mapping, 29(11), 1265-1275.
    Chen, Yu-Han, Edgar, J Christopher, Huang, Mingxiong, Hunter, Michael A, Epstein, Emerson, Howell, Breannan, . . . Cañive, José M. (2013). Frontal and superior temporal auditory processing abnormalities in schizophrenia. NeuroImage: Clinical.
    Cheng, Yawei, Meltzoff, Andrew N, & Decety, Jean. (2007). Motivation modulates the activity of the human mirror-neuron system. Cerebral Cortex, 17(8), 1979-1986.
    Crow, Timothy J, Ball, Joanna, Bloom, Steven R, Brown, Rosemary, Bruton, Clive J, Colter, Nigel, . . . Roberts, Gareth W. (1989). Schizophrenia as an anomaly of development of cerebral asymmetry: a postmortem study and a proposal concerning the genetic basis of the disease. Archives of general psychiatry, 46(12), 1145.
    Davalos, Deana B, Kisley, Michael A, & Ross, Randal G. (2003). Effects of interval duration on temporal processing in schizophrenia. Brain and cognition, 52(3), 295-301.
    Davalos, Deana B, Rojas, Donald C, & Tregellas, Jason R. (2011). Temporal processing in schizophrenia: Effects of task-difficulty on behavioral discrimination and neuronal responses. Schizophrenia research, 127(1), 123-130.
    Degerman, Alexander, Rinne, Teemu, Salmi, Juha, Salonen, Oili, & Alho, Kimmo. (2006). Selective attention to sound location or pitch studied with fMRI. Brain research, 1077(1), 123-134.
    Deutsch, Diana. (1999). Grouping mechanisms in music. The psychology of music, 2, 299-348.
    Du, Wei, Calhoun, Vince D, Li, Hualiang, Ma, Sai, Eichele, Tom, Kiehl, Kent A, . . . Adali, Tülay. (2012). High classification accuracy for schizophrenia with rest and task fMRI data. Frontiers in human neuroscience, 6.
    Edgar, J Christopher, Hunter, Michael A, Huang, Mingxiong, Smith, Ashley K, Chen, Yuhan, Sadek, Joseph, . . . Cañive, José M. (2012). Temporal and frontal cortical thickness associations with M100 auditory activity and attention in healthy controls and individuals with schizophrenia. Schizophrenia research.
    Eitan, Zohar, & Timmers, Renee. (2010). Beethoven’s last piano sonata and those who follow crocodiles: Cross-domain mappings of auditory pitch in a musical context. Cognition, 114(3), 405-422.
    Fadiga, Luciano, Craighero, Laila, & D’Ausilio, Alessandro. (2009). Broca's area in language, action, and music. Annals of the New York Academy of Sciences, 1169(1), 448-458.
    Ford, Judith M, Mathalon, Daniel H, Kalba, Sontine, Marsh, Laura, & Pfefferbaum, Adolf. (2001). N1 and P300 abnormalities in patients with schizophrenia, epilepsy, and epilepsy with schizophrenialike features. Biological psychiatry, 49(10), 848-860.
    Fusar-Poli, Paolo, Crossley, Nicolas, Woolley, James, Carletti, Francesco, Perez-Iglesias, Rocio, Broome, Matthew, . . . McGuire, Philip. (2011). Gray matter alterations related to P300 abnormalities in subjects at high risk for psychosis: longitudinal MRI-EEG study. Neuroimage, 55(1), 320-328.
    García-Larrea, Luis, Lukaszewicz, Anne-Claire, & Mauguiére, François. (1992). Revisiting the oddball paradigm. Non-target vs neutral stimuli and the evaluation of ERP attentional effects. Neuropsychologia, 30(8), 723-741.
    Gaser, Christian, Nenadic, Igor, Volz, Hans-Peter, Büchel, Christian, & Sauer, Heinrich. (2004). Neuroanatomy of ‘hearing voices’: a frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia. Cerebral Cortex, 14(1), 91-96.
    Gerloff, Christian, Corwell, Brian, Chen, Robert, Hallett, Mark, & Cohen, Leonardo G. (1997). Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain, 120(9), 1587-1602.
    Gutschalk, A., Patterson, R. D., Rupp, A., Uppenkamp, S., & Scherg, M. (2002). Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage, 15(1), 207-216. doi: 10.1006/nimg.2001.0949
    Harms, Michael P, Wang, Lei, Campanella, Carolina, Aldridge, Kristina, Moffitt, Amanda J, Kuelper, John, . . . Csernansky, John G. (2010). Structural abnormalities in gyri of the prefrontal cortex in individuals with schizophrenia and their unaffected siblings. The British Journal of Psychiatry, 196(2), 150-157.
    Herwig, Uwe, Satrapi, Peyman, & Schönfeldt-Lecuona, Carlos. (2003). Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain topography, 16(2), 95-99.
    Hillyard, Steven A, Hink, Robert F, Schwent, Vincent L, & Picton, Terence W. (1973). Electrical signs of selective attention in the human brain. Science, 182(108), 177-180.
    Hyde, Krista L, Peretz, Isabelle, & Zatorre, Robert J. (2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 46(2), 632-639.
    Jablensky, Assen. (1995). Schizophrenia: recent epidemiologic issues. Epidemiologic Reviews, 17(1), 10-20.
    Jafri, Madiha J, & Calhoun, Vince D. (2006). Functional classification of schizophrenia using feed forward neural networks. Paper presented at the Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference.
    Javitt, Daniel C. (2009). When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annual review of clinical psychology, 5, 249-275.
    Javitt, Daniel C, Shelley, Anne-Marie, & Ritter, Walter. (2000). Associated deficits in mismatch negativity generation and tone matching in schizophrenia. Clinical Neurophysiology, 111(10), 1733-1737.
    Johnson, Jennifer Adrienne, & Zatorre, Robert J. (2006). Neural substrates for dividing and focusing attention between simultaneous auditory and visual events. Neuroimage, 31(4), 1673-1681.
    Kay, S.R., Flszbein, A., & Opfer, L.A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261.
    Kennedy, Michael, & Bourne, Joyce. (2004). The concise Oxford dictionary of music: Oxford University Press.
    Korzyukov, Oleg, Pflieger, Mark E, Wagner, Michael, Bowyer, Susan M, Rosburg, T, Sundaresan, Karthik, . . . Boutros, Nashaat N. (2007). Generators of the intracranial P50 response in auditory sensory gating. Neuroimage, 35(2), 814-826.
    Liddle, Peter F, & Morris, Danielle L. (1991). Schizophrenic syndromes and frontal lobe performance. The British Journal of Psychiatry, 158(3), 340-345.
    MacDonald, Angus W, Thermenos, Heidi W, Barch, Deanna M, & Seidman, Larry J. (2009). Imaging genetic liability to schizophrenia: systematic review of FMRI studies of patients’ nonpsychotic relatives. Schizophrenia bulletin, 35(6), 1142-1162.
    McIntosh, Andrew M, Job, Dominic E, Moorhead, William J, Harrison, Lesley K, Whalley, Heather C, Johnstone, Eve C, & Lawrie, Stephen M. (2006). Genetic liability to schizophrenia or bipolar disorder and its relationship to brain structure. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141(1), 76-83.
    Minzenberg, Michael J, Laird, Angela R, Thelen, Sarah, Carter, Cameron S, & Glahn, David C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66(8), 811.
    Mitelman, Serge A, Brickman, Adam M, Shihabuddin, Lina, Newmark, Randall E, Hazlett, Erin A, Haznedar, M Mehmet, & Buchsbaum, Monte S. (2007). A comprehensive assessment of gray and white matter volumes and their relationship to outcome and severity in schizophrenia. Neuroimage, 37(2), 449-462.
    Mueller, Andreas, Candrian, Gian, Kropotov, Juri D, Ponomarev, Valery A, & Baschera, Gian-Marco. (2010). Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomed Phys, 4(Suppl 1), S1.
    Musso, Mariacristina, Moro, Andrea, Glauche, Volkmar, Rijntjes, Michel, Reichenbach, Jürgen, Büchel, Christian, & Weiller, Cornelius. (2003). Broca's area and the language instinct. Nature neuroscience, 6(7), 774-781.
    Näätänen, Risto, & Picton, Terence. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24(4), 375-425.
    Neuhaus, Andres H, Popescu, Florin C, Bates, John A, Goldberg, Terry E, & Malhotra, Anil K. (2013). Single-subject classification of schizophrenia using event-related potentials obtained during auditory and visual oddball paradigms. European archives of psychiatry and clinical neuroscience, 1-7.
    Neukirch, M, Hegerl, U, Kötitz, R, Dorn, H, Gallinat, U, & Herrmann, WM. (2002). Comparison of the amplitude/intensity function of the auditory evoked N1m and N1 components. Neuropsychobiology, 45(1), 41-48.
    O'donnell, BF, Vohs, JL, Hetrick, WP, Carroll, CA, & Shekhar, A. (2004). Auditory event-related potential abnormalities in bipolar disorder and schizophrenia. International Journal of Psychophysiology, 53(1), 45-55.
    Oertel-Knöchel, Viola, & Linden, David EJ. (2011). Cerebral asymmetry in schizophrenia. The Neuroscientist, 17(5), 456-467.
    Okamoto, Masako, Dan, Haruka, Sakamoto, Kuniko, Takeo, Kazuhiro, Shimizu, Koji, Kohno, Satoru, . . . Kohyama, Kaoru. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage, 21(1), 99-111.
    Penagos, H., Melcher, J. R., & Oxenham, A. J. (2004). A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. J Neurosci, 24(30), 6810-6815. doi: 10.1523/JNEUROSCI.0383-04.2004
    Plaze, Marion, Bartrés-Faz, David, Martinot, Jean-Luc, Januel, Dominique, Bellivier, Franck, De Beaurepaire, Renaud, . . . Artiges, Eric. (2006). Left superior temporal gyrus activation during sentence perception negatively correlates with auditory hallucination severity in schizophrenia patients. Schizophrenia research, 87(1), 109-115.
    Ragland, JD, Yoon, J, Minzenberg, MJ, & Carter, CS. (2007). Neuroimaging of cognitive disability in schizophrenia: search for a pathophysiological mechanism. International Review of Psychiatry, 19(4), 417-427.
    Ragland, John D, Blumenfeld, Robert S, Ramsay, Ian S, Yonelinas, Andrew, Yoon, Jong, Solomon, Marjorie, . . . Ranganath, Charan. (2012). Neural correlates of relational and item-specific encoding during working and long-term memory in schizophrenia. NeuroImage, 59(2), 1719-1726.
    Rossi, Simone, Cappa, Stefano F, Babiloni, Claudio, Pasqualetti, Patrizio, Miniussi, Carlo, Carducci, Filippo, . . . Rossini, Paolo M. (2001). Prefontal cortex in long-term memory: an “interference” approach using magnetic stimulation. Nature Neuroscience, 4(9), 948-952.
    Salisbury, Dean F, Collins, KC, & McCarley, Robert W. (2010). Reductions in the N1 and P2 auditory event-related potentials in first-hospitalized and chronic schizophrenia. Schizophrenia bulletin, 36(5), 991-1000.
    Sartorius, Norman, Jablensky, Assen, Korten, A, Ernberg, G, Anker, M, Cooper, JE, & Day, R. (1986). Early manifestations and first contact incidence of schizophrenia in different cultures. Psychological medicine, 16(4), 909-928.
    Saykin, Andrew J, Gur, Ruben C, Gur, Raquel E, Mozley, P David, Mozley, Lyn H, Resnick, Susan M, . . . Stafiniak, Paul. (1991). Neuropsychological function in schizophrenia: selective impairment in memory and learning. Archives of General Psychiatry, 48(7), 618.
    Schellenberg, E.G., & Trehub, S.E. (1994). Frequency ratios and the perception of tone patterns. Psychonomic Bulletin & Review, 1(2), 191-201.
    Schirmer, Todd N, Dorflinger, Jill M, Marlow-O'Connor, Megan, Pendergrass, Jo Cara, Hartzell, Aileen, All, Sherrie D, & Charles, David. (2009). FMRI indices of auditory attention in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(1), 25-32.
    Shelley, Anne-Marie, Silipo, Gail, & Javitt, Daniel C. (1999). Diminished responsiveness of ERPs in schizophrenic subjects to changes in auditory stimulation parameters: implications for theories of cortical dysfunction. Schizophrenia research, 37(1), 65-79.
    Shi, Feng, Liu, Yong, Jiang, Tianzi, Zhou, Yuan, Zhu, Wanlin, Jiang, Jiefeng, . . . Liu, Zhening. (2007). Regional homogeneity and anatomical parcellation for fMRI image classification: application to schizophrenia and normal controls Medical Image Computing and Computer-Assisted Intervention–MICCAI 2007 (pp. 136-143): Springer.
    Simões, M, Carvalho, P, & Castelo-Branco, M. (2012). Virtual reality and brain-computer interface for joint-attention training in autism.
    Sui, Jing, Adali, Tülay, Pearlson, Godfrey D, & Calhoun, Vince D. (2009). An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques. Neuroimage, 46(1), 73-86.
    Tang, Yan, Wang, Lifeng, Cao, Fang, & Tan, Liwen. (2012). Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis. Biomed. Eng. Online, 11, 1-1.
    Thompson, M., & Thompson, L. (2003). The Association for Applied Psychophysiology and Biofeedback, vol. 23, p. 386, . “The neurofeedback book,” Whear Ridge, Colorado USA: .
    Towle, Vernon L, Bolaños, José, Suarez, Diane, Tan, Kim, Grzeszczuk, Robert, Levin, David N, . . . Spire, Jean-Paul. (1993). The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalography and clinical neurophysiology, 86(1), 1-6.
    Trainor, Laurel J. (2012). Musical experience, plasticity, and maturation: issues in measuring developmental change using EEG and MEG. Annals of the New York Academy of Sciences, 1252(1), 25-36.
    Tramo, Mark Jude, Shah, Gaurav D, & Braida, Louis D. (2002). Functional role of auditory cortex in frequency processing and pitch perception. Journal of Neurophysiology, 87(1), 122-139.
    Unschuld, Paul G, Buchholz, Alison S, Varvaris, Mark, van Zijl, Peter CM, Ross, Christopher A, Pekar, James J, . . . Keshavan, Matcheri S. (2013). Prefrontal Brain Network Connectivity Indicates Degree of Both Schizophrenia Risk and Cognitive Dysfunction. Schizophrenia bulletin.
    Venkataraman, Archana, Kubicki, Marek, Westin, C, & Golland, Polina. (2010). Robust feature selection in resting-state fmri connectivity based on population studies. Paper presented at the Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on.
    Wei-Hong, Chen. (2010). Perceptive Processing of Musical Consonance and Sound Complexity among Musicians, Non-musicians and Patients with Schizophrenia: An Event-related Potential and Behavioral Study. National Cheng Kung University Institute of Computer Science and Information Engineering.
    Weiss, Elisabeth M, Siedentopf, Christian, Golaszewski, Stefan, Mottaghy, Felix M, Hofer, Alex, Kremser, Christian, . . . Fleischhacker, W Wolfgang. (2007). Brain activation patterns during a selective attention test—a functional MRI study in healthy volunteers and unmedicated patients during an acute episode of schizophrenia. Psychiatry Research: Neuroimaging, 154(1), 31-40.
    Wu, Kuan-Yi, Chao, Ching-Wen, Hung, Ching-I, Chen, Wei-Hong, Chen, Yung-Ting, & Liang, Sheng-Fu. (2013). Functional abnormalities in the cortical processing of sound complexity and musical consonance in schizophrenia: evidence from an evoked potential study. BMC psychiatry, 13(1), 158.
    Yung-Ting, Chen. (2011). Hemispheric Differences in the Auditory Event-Related Potential Elicited by Chord and Interval Stimuli: A Comparison among Musicians Patients with Schizophrenia and Normal Subjects. National Cheng Kung University Institute of Computer Science and Information Engineering.
    Zohar, Ada H, Goldman, Eitan, Calamary, Ramit, & Mashiah, Merav. (2005). Religiosity and obsessive–compulsive behavior in Israeli Jews. Behaviour research and therapy, 43(7), 857-868.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE