| 研究生: |
丁乙凡 Ting, Yi-Fang |
|---|---|
| 論文名稱: |
透過相組成與形貌控制優化準二維鈣鈦礦薄膜之放大自發放光特性 Improved Amplified Spontaneous Emission Characteristics in Quasi-2D Perovskite Films via Phase and Morphology Control |
| 指導教授: |
徐旭政
Hsu, Hsu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 準二維鈣鈦礦 、放大自發輻射 、瞬態吸收光譜 |
| 外文關鍵詞: | Quasi-2D perovskites, Amplified Spontaneous Emission, Transient absorption |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
準二維鈣鈦礦具備高光致發光量子產率與多重量子井結構,是極具潛力的雷射增益材料。然而,溶液製程易形成低維相,不僅抑制了能量由高帶隙相向低帶隙相的順利傳遞,也導致非輻射復合增強,進而限制了其整體發光效率與增益表現。
本研究採用 N,N-二甲基乙醯胺(DMAc)作為溶劑,製備出低粗糙度、結晶性佳且垂直排列之高品質 (PEA)2(MA)3Pb4I13 薄膜。瞬態吸收光譜(TAS)顯示,其高 n 相具能量轉移時間低於 0.5 ps 的優勢,代表更有效率的載子聚集與發光行為。
最終我們從脈衝雷射觀察到放大自發輻射的特性,證實形貌與相分佈控制可有效提升載子能量轉移效率與發光表現,對未來高效率光電雷射元件開發具有關鍵意義。
Quasi-two-dimensional (quasi-2D) perovskites, featuring high photoluminescence quantum yield and multi-quantum well structures, are regarded as promising gain media for laser applications. However, during solution processing, the spontaneous formation of low-dimensional (low-n) phases often suppresses efficient energy transfer from wide-bandgap to narrow-bandgap domains and enhances nonradiative recombination, ultimately limiting emission efficiency and optical gain.
In this study, we employed N,N-dimethylacetamide (DMAc) as the processing solvent to fabricate high-quality (PEA)2(MA)3Pb4I13 films with low surface roughness, improved crystallinity, and vertically aligned structures. Transient absorption spectroscopy (TAS) reveals that the high-n phases exhibit ultrafast energy transfer with characteristic times below 0.5 ps, indicating efficient carrier funneling and radiative recombination behavior.
The observation of amplified spontaneous emission under pulsed excitation highlights the effectiveness of morphology and phase control in enhancing energy transfer and emission performance, offering valuable insights for future high-efficiency laser device design.
[1] C. J. Qin, A. S. D. Sandanayaka, C. Y. Zhao, et al., “Stable room-temperature continuouswave lasing in quasi-2D perovskite films,” Nature, vol. 585, no. 7823, pp. 53–+, 2020, ISI Document Delivery No.: NJ1LP.
[2] X. Zeng, Z. Z. Liu, H. J. Du, et al., “Achieving low threshold and high optical gain amplified spontaneous emission in mapbi3 perovskite films via symmetric waveguide effect,” Advanced Optical Materials, vol. 10, no. 23, p. 11, 2022, ISI Document Delivery No.: 7K7RB.
[3] K.Wang, J. Y. Park, Akriti, and L. T. Dou, “Two-dimensional halide perovskite quantumwell emitters: A critical review,” Ecomat, vol. 3, no. 3, p. 13, 2021, ISI Document Delivery No.: SV9UH.
[4] Q. S. Shan, Y. H. Dong, H. Y. Xiang, et al., “Perovskite quantum dots for the next generation displays: Progress and prospect,” Advanced Functional Materials, vol. 34, no. 36, p. 17, 2024, ISI Document Delivery No.: H6Q1K.
[5] Y. L. Liu, C. H. Chiang, Y. C. Chen, and M. L. Tsai, “Highly enhanced photoluminescence quantum yield of phenethylammonium halide-passivated inorganic perovskite/-cellulose nanocrystal films,” Acs Sustainable Chemistry&Engineering, vol. 11, no. 12, pp. 4580–4587, 2023, ISI Document Delivery No.: A7LE0.
[6] M. Garc´ıa-Hern´andez, G. Chadeyron, D. Boyer, A. Garc´ıa-Murillo, F. Carrillo-Romo, and R. Mahiou, “Hydrothermal synthesis and characterization of europium-doped barium titanate nanocrystallites,” Nano-Micro Letters, vol. 5, no. 1, pp. 57–65, 2013, ISI Document Delivery No.: 193NR.
[7] I. Goldberg, N. Annavarapu, S. Leitner, et al., “Multimode lasing in all-solutionprocessed uv-nanoimprinted distributed feedback MAPbI 3 perovskite waveguides,” Acs Photonics, vol. 10, no. 5, pp. 1591–1600, 2023, ISI Document Delivery No.: I8YK4.
[8] J. Qiu, Y. T. Zheng, Y. D. Xia, L. F. Chao, Y. H. Chen, and W. Huang, “Rapid crystallization for efficient 2D Ruddlesden-Popper (2DRP) Perovskite Solar Cells,” Advanced Functional Materials, vol. 29, no. 47, p. 7, 2019, ISI Document Delivery No.: JQ0MZ.
[9] L. Zhang, C. J. Sun, T. W. He, et al., “High-performance quasi-2D perovskite light-emitting diodes: From materials to devices,” Light-Science & Applications, vol. 10, no. 1, p. 26, 2021, ISI Document Delivery No.: QZ4ZZ.
[10] X. W. Gong, O. Voznyy, A. Jain, et al., “Electron-phonon interaction in efficient perovskite blue emitters,” Nature Materials, vol. 17, no. 6, pp. 550–+, 2018, ISI Document Delivery No.: GG8DP.
[11] C. H. Chen, Y. H. Kuo, Y. K. Lin, et al., “Enhancing the performance of Quasi-2D perovskite light-emitting diodes using natural cyclic molecules with distinct phase regulation behaviors,” Acs Applied Materials & Interfaces, vol. 14, no. 7, pp. 9587–9596, 2022, ISI Document Delivery No.: 0U0TV.
[12] S. Bai, Y. Z. Jin, and F. Gao, Organometal Halide Perovskites for Photovoltaic Applications (Advanced Functional Materials). Beverly: Scrivener Publishing Llc, 2015, pp. 535–566, ISI Document Delivery No.: BL5BK.
[13] E. A. Katz, “Perovskite: Name puzzle and german-russian odyssey of discovery, Helvetica Chimica Acta, vol. 103, no. 6, p. 14, 2020, ISI Document Delivery No.:MB4OQ.
[14] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nature Photonics, vol. 8, no. 7, pp. 506–514, 2014, ISI Document Delivery No.: AK1YT.
[15] Q. Chen, N. De Marco, Y. Yang, et al., “Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today, vol. 10, no. 3, pp. 355–396, 2015, ISI Document Delivery No.: CO3CI.
[16] A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag,“Colloidal cspbbr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots,” Angewandte Chemie-International Edition, vol. 54, no. 51, pp. 15 424–15 428, 2015, ISI Document Delivery No.: DA8MH.
[17] A. Bernasconi and L. Malavasi, “Direct evidence of permanent octahedra distortion in mapbbr3 hybrid perovskite,” Acs Energy Letters, vol. 2, no. 4, pp. 863–868, 2017, ISI Document Delivery No.: ES6DM.
[18] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050–+, 2009, ISI Document Delivery No.: 441FX.
[19] P. P. Liu, W. H. Li, J. R. Li, et al., “Interfacial work function modulation of wide bandgap perovskite solar cell for efficient perovskite/cigs tandem solar cell,” Small Methods, p. 9, 2025, ISI Document Delivery No.: T6G5Q.
[20] Z. L. Wang, T. Hisatomi, R. G. Li, et al., “Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production,” Joule, vol. 5, no. 2, pp. 344–359, 2021, ISI Document Delivery No.: QX2VC.
[21] Q. Chen, N. De Marco, Y. Yang, et al., “Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today, vol. 10, no. 3, pp. 355–396, 2015, ISI Document Delivery No.: CO3CI.
[22] C. Y. Zhao and C. J. Qin, “Quasi-2D lead halide perovskite gain materials toward electrical pumping laser,” Nanophotonics, vol. 10, no. 8, pp. 2167–2180, 2021, ISI Document Delivery No.: SV1AO.
[23] L. M. Kong, X. Y. Zhang, C. X. Zhang, et al., “Stability of perovskite light-emitting diodes: Existing issues and mitigation strategies related to both material and device aspects,” Advanced Materials, vol. 34, no. 43, p. 30, 2022, ISI Document Delivery No.: 5N9MR.
[24] X. Dong, X. Li, X. B. Wang, et al., “Improve the charge carrier transporting in two-dimensional ruddlesden-popper perovskite solar cells,” Advanced Materials, p. 26, 2024, ISI Document Delivery No.: HQ2T1.
[25] Z. K. Tan, R. S. Moghaddam, M. L. Lai, et al., “Bright light-emitting diodes based on organometal halide perovskite,” Nature Nanotechnology, vol. 9, no. 9, pp. 687–692, 2014, ISI Document Delivery No.: AP1FZ.
[26] Y. Cao, N. N.Wang, H. Tian, et al., “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures,” Nature, vol. 562, no. 7726, pp. 249–+, 2018, ISI Document Delivery No.: GW4UV.
[27] K. B. Lin, J. Xing, L. N. Quan, et al., “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature, vol. 562, no. 7726, pp. 245–+, 2018, ISI Document Delivery No.: GW4UV.
[28] X. W. Sun, D. L. Ding, Z. G. Nie, et al., “A close-space fast nucleation strategy toward high-efficiency perovskite light-emitting diodes,” Nano Letters, vol. 25, no. 13, pp. 5258–5264, 2025, ISI Document Delivery No.: 0WO4N.
[29] S. Vangelista, A. Lamperti, C.Wiemer, M. Fanciulli, and R. Mantovan, “Atomic layer deposition of hexagonal erfeo3 thin films on SiO 2/Si,” Thin Solid Films, vol. 604, pp. 18–22, 2016, ISI Document Delivery No.: DI4LE.
[30] P. Y. Liu, N. Han,W.Wang, R. Ran,W. Zhou, and Z. P. Shao, “High-quality ruddlesden-popper perovskite film formation for high-performance perovskite solar cells,” Advanced Materials, vol. 33, no. 10, p. 40, 2021, ISI Document Delivery No.: QU3SC.
[31] K. Elkhouly, I. Goldberg, X. Zhang, et al., “Electrically assisted amplified spontaneous emission in perovskite light-emitting diodes,” Nature Photonics, vol. 18, no. 2, pp. 132–138, 2024, ISI Document Delivery No.: JZ5B1.
[32] T. Kondo, T. Azuma, T. Yuasa, and R. Ito, “Biexciton lasing in the layered perovskitetype material (C 6H 13NH 3) 2PbI 4,” Solid State Communications, vol. 105, no. 4, pp. 253–255, 1998, ISI Document Delivery No.: YP041.
[33] G. C. Xing, N. Mathews, S. S. Lim, et al., “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nature Materials, vol. 13, no. 5, pp. 476–480, 2014, ISI Document Delivery No.: AF6ST.
[34] R. Z. Wang, Y. Su, H. J. Fan, C. X. Qi, S. Zhang, and T. Cao, “Tunable vertical cavity microlasers based on MAPbI& 3phasechangeperovskite,” Opto-Electronic Advances, p. 12, 2025, ISI Document Delivery No.: 2RH7T.
[35] W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: Methods, tools and challenges,” Laser & Photonics Reviews, vol. 12, no. 4, p. 29, 2018, ISI Document Delivery No.: GD2AD.
[36] S. Shekhar,W. Bogaerts, L. Chrostowski, et al., “Roadmapping the next generation of silicon photonics,” Nature Communications, vol. 15, no. 1, p. 15, 2024, ISI Document Delivery No.: GH0X0.
[37] C. Xiang and J. E. Bowers, “Building 3D integrated circuits with electronics and photonics,”Nature Electronics, vol. 7, no. 6, pp. 422–424, 2024, ISI Document Delivery No.: WX3D9.
[38] D. Sirbu, F. H. Balogun, R. L. Milot, and P. Docampo, “Layered perovskites in solar cells: Structure, optoelectronic properties, and device design,” Advanced Energy Materials, vol. 11, no. 24, p. 26, 2021, ISI Document Delivery No.: SX1TA.
[39] L. N. Quan, M. J. Yuan, R. Comin, et al., “Ligand-stabilized reduced-dimensionality perovskites,” Journal of the American Chemical Society, vol. 138, no. 8, pp. 2649–2655, 2016, ISI Document Delivery No.: DF6GK.
[40] H. H. Tsai,W. Y. Nie, J. C. Blancon, et al., “High-efficiency two-dimensional ruddlesden-popper perovskite solar cells,” Nature, vol. 536, no. 7616, pp. 312–+, 2016, ISI Document Delivery No.: DT9GN.
[41] K. P. Bera, C. Hanmandlu, H. Lin, et al., “Fabry-perot oscillation and resonance energy transfer: Mechanism for ultralow-threshold optically and electrically driven random laser in Quasi-2D ruddlesden-popper perovskites,” Acs Nano, vol. 17, no. 6, pp. 5373–5386, 2023, ISI Document Delivery No.: D6RA5.
[42] I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, and H. I. Karunadasa, “A layered hybrid perovskite solar-cell absorber with enhanced moisture stability,” Angewandte Chemie-International Edition, vol. 53, no. 42, pp. 11 232–11 235, 2014, ISI Document Delivery No.: AR7HW.
[43] L. Lei, Q. Dong, K. Gundogdu, and F. So, “Metal halide perovskites for laser applications,”Advanced Functional Materials, vol. 31, no. 16, p. 21, 2021, ISI Document Delivery No.: RN7IL.
[44] M. R. Leyden, T. Matsushima, C. J. Qin, S. B. Ruan, H. Ye, and C. Adachi, “Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites,” Physical Chemistry Chemical Physics, vol. 20, no. 22, pp. 15 030–15 036, 2018, ISI Document Delivery No.: GN6FE.
[45] L. H. Gu, M. M. Li, J. Y. Lai, et al., “High q-factor and low threshold continuouswave near-infrared lasing with Quasi-2D perovskites,” Advanced Functional Materials, vol. 33, no. 44, p. 6, 2023, ISI Document Delivery No.: EJ3V7.
[46] T. L. Leung, I. Ahmad, A. A. Syed, A. M. C. Ng, J. Popovic, and A. B. Djurisic, “Stability of 2D and quasi-2D perovskite materials and devices,” Communications Materials, vol. 3, no. 1, p. 10, 2022, ISI Document Delivery No.: 4I4XB.
[47] O. Nazarenko, M. R. Kotyrba, M. W¨orle, E. Cueryo-Reyes, S. Yakunin, and M. V. Koyalenko, “Luminescent and photoconductive layered lead halide perovskite compounds comprising mixtures of cesium and guanidinium cations,” Inorganic Chemistry, vol. 56, no. 19, pp. 11 552–11 564, 2017, ISI Document Delivery No.: FJ0DP.
[48] X. T. Li, J. M. Hoffman, and M. G. Kanatzidis, “The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency,”Chemical Reviews, vol. 121, no. 4, pp. 2230–2291, 2021, ISI Document Delivery No.: QO6CV.
[49] M. C.Weidman, M. Seitz, S. D. Stranks, andW. A. Tisdale, “Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition,” Acs Nano, vol. 10, no. 8, pp. 7830–7839, 2016, ISI Document Delivery No.: DU1HP.
[50] H. Y. Xia, C. Hu, T. K. Chen, D. Hu, M. R. Zhang, and K. Xie, “Advances in conjugated polymer lasers,” Polymers, vol. 11, no. 3, p. 15, 2019, ISI Document Delivery No.: HT3YY.
[51] L. Lei, D. Seyitliyev, S. Stuard, et al., “Efficient energy funneling in quasi-2d perovskites: From light emission to lasing,” Advanced Materials, vol. 32, no. 16, p. 9, 2020, ISI Document Delivery No.: LJ0RK.
[52] J. Moon, Y. Mehta, K. Gundogdu, F. So, and Q. Gu, “Metal-halide perovskite lasers: Cavity formation and emission characteristics,” Advanced Materials, vol. 36, no. 20, p. 27, 2024, ISI Document Delivery No.: QY3A9.
[53] J. M. Urban, G. Chehade, M. Dyksik, et al., “Revealing excitonic phonon coupling in (PEA) 2(MA) n−1Pb nI 3n+1 2D layered perovskites,” Journal of Physical Chemistry Letters, vol. 11, no. 15, pp. 5830–5835, 2020, ISI Document Delivery No.: ND7DZ.
[54] M. Dyksik, S. L. Wang, W. Paritmongkol, et al., “Tuning the excitonic properties of the 2D (PEA) 2(MA) n−1Pb nI 3n+1 perovskite family via quantum confinement,”Journal of Physical Chemistry Letters, vol. 12, no. 6, pp. 1638–1643, 2021, ISI Document Delivery No.: QL9SF.
[55] C. C. Qin, Q. X. Huang, S. C. Zhang, et al., “Effect of phase distribution and defect passivation on amplified spontaneous emission of quasi-2D dion-jacobson perovskite,” Applied Physics Letters, vol. 124, no. 8, p. 6, 2024, ISI Document Delivery No.: JP3P5.
[56] G. H. Li, K. Lin, K. F. Zhao, et al., “Localized bound multiexcitons in engineered Quasi-2D perovskites grains at room temperature for efficient lasers,” Advanced Materials, vol. 35, no. 20, p. 9, 2023.
[57] G. R. Jin, T. H. Liu, Y. Z. Li, et al., “Low-dimensional phase suppression and defect passivation of quasi-2D perovskites for efficient electroluminescence and lowthreshold amplified spontaneous emission,” Nanoscale, vol. 14, no. 3, pp. 919–929, 2022, ISI Document Delivery No.: YL3YW.
[58] Y. Liang, Q. Y. Shang, Q. Wei, et al., “Lasing from mechanically exfoliated 2D homologous ruddlesden-popper perovskite engineered by inorganic layer thickness,” Advanced Materials, vol. 31, no. 39, p. 8, 2019, ISI Document Delivery No.: IZ8BX.
[59] S. Driessen, S. Sarigul-Ozbek, C. M. Sutter-Fella, and S. X. Tao, “Synthesis and growth of solution-processed chiral perovskites,” Journal of Physics-Energy, vol. 6, no. 4, p. 26, 2024, ISI Document Delivery No.: D5M9S.
[60] S. S. Miao, J. Zhan, J. Y.Wu, Y. Y. Li, Y. J. Qin, and X. C. Ai, “Mechanism of solvent engineering for controlling the room-temperature crystallization kinetics of MAPbI3 perovskite polycrystals,” Journal of Physical Chemistry C, vol. 128, no. 12, pp. 5236–5243, 2024, ISI Document Delivery No.: MI2F1.
[61] A. Z. Chen, M. Shiu, J. H. Ma, et al., “Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance,” Nature Communications, vol. 9, p. 7, 2018, ISI Document Delivery No.: GB9NG.
[62] R. Berera, R. van Grondelle, and J. T. M. Kennis, “Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems,” Photosynthesis Research, vol. 101, no. 2-3, pp. 105–118, 2009, ISI Document Delivery No.: 495IT.
[63] X. X. Qin, G. Z. Zhang, L. Chen, et al., “A review: Principles and applications of high-pressure in situ time-resolved transient,” Ultrafast Science, vol. 4, p. 15, 2024, ISI Document Delivery No.: PW2X2.
[64] C. Ruckebusch, M. Sliwa, P. Pernot, A. de Juan, and R. Tauler, “Comprehensive data analysis of femtosecond transient absorption spectra: A review,” Journal of Photochemistry and Photobiology C-Photochemistry Reviews, vol. 13, no. 1, pp. 1–27, 2012, ISI Document Delivery No.: 915RS.
[65] S. Parola, M. Daanoune, A. Focsa, et al., “Study of photoluminescence decay by timecorrelated single photon counting for the determination of the minority-carrier lifetime in silicon,” Energy Procedia, vol. 55, pp. 121–127, Sep. 2014.
[66] H.-L. Loi, J. Cao, X. Guo, et al., “Gradient 2D/3D perovskite films prepared by hot casting for sensitive photodetectors,” Advanced Science, 2020.
[67] H. P. Di,W. Zeng, B. H. Li, et al., “Regulating 3D phase in Quasi-2D perovskite films for high-performance and stable photodetectors,” Advanced Science, vol. 10, no. 26, p. 9, 2023, ISI Document Delivery No.: T6SC1.
[68] H. Y. Luo, M. Y. Pi, Z. J. Zhan, et al., “Solution chemistry strategies to construct a stable mapbi3 film toward high performance of amplified spontaneous emission,”Chemical Engineering Journal, vol. 482, p. 10, 2024, ISI Document Delivery No.: IN5J4.
[69] J. Z. Li, L. Zhang, Z. M. Chu, et al., “Amplified spontaneous emission with a low threshold from Quasi-2D perovskite films via phase engineering and surface passivation,”Advanced Optical Materials, vol. 10, no. 6, p. 9, 2022, ISI Document Delivery No.: ZV4YU.
[70] T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the nearband-edge photoluminescence of semiconductors,” Physical Review B, vol. 45, no. 16, pp. 8989–8994, 1992, ISI Document Delivery No.: HR130.
[71] P. Y. Pang, G. R. Jin, C. Liang, et al., “Rearranging low-dimensional phase distribution of Quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes,” Acs Nano, vol. 14, no. 9, pp. 11 420–11 430, 2020, ISI Document Delivery No.: NZ2WR.
[72] K. B. Zheng, K. Z´ıdek, M. Abdellah, M. E. Messing, M. J. Al-Marri, and T. Pullerits, “Trap states and their dynamics in organometal halide perovskite nanoparticles and bulk crystals,” Journal of Physical Chemistry C, vol. 120, no. 5, pp. 3077–3084, 2016, ISI Document Delivery No.: DD8XO.
[73] P. Y. Pang, G. R. Jin, C. Liang, et al., “Rearranging low-dimensional phase distribution of quasi-2d perovskites for efficient sky-blue perovskite light-emitting diodes,” Acs Nano, vol. 14, no. 9, pp. 11 420–11 430, 2020, ISI Document Delivery No.: NZ2WR.
[74] S. Panuganti, L. V. Besteiro, E. S. Vasileiadou, et al., “Distance dependence of forster resonance energy transfer rates in 2D perovskite quantum wells via control of organic spacer length,” Journal of the American Chemical Society, vol. 143, no. 11, pp. 4244–4252, 2021, ISI Document Delivery No.: RF3SN.
[75] N. N. Liang, J. H. Yan, and T. R. Zhai, “Hybrid microcavity lasers: Principle, design, and practical application,” Laser & Photonics Reviews, vol. 17, no. 11, p. 14, 2023, ISI Document Delivery No.: KN0T9.
[76] M. C. Yen, C. J. Lee, Y. C. Yao, et al., “Tamm-plasmon exciton-polaritons in single monolayered CsPbBr3 quantum dots at room temperature,” Advanced Optical Materials, vol. 11, no. 4, p. 10, 2023, ISI Document Delivery No.: 9A2FZ.