| 研究生: |
李順義 Li, Shun-Yi |
|---|---|
| 論文名稱: |
白金觸媒微管之特性討論與研究 Characterization of Pt catalytic combustor in microchannel |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 微機電系統 、微管道 、白金觸媒 、微燃燒器 、微反應系統 |
| 外文關鍵詞: | microchannel, micro reactor, Pt catalytic, micro combustor, MEMS |
| 相關次數: | 點閱:57 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在微小化過程中燃燒所面臨的最大問題之一即是燃燒在熄滅間距(quenching length)尺度的限制,其最大的原因包含在小尺度的燃燒公間內因為熱損失與摩擦損失及自由基受壁面破壞的增加等。實驗主要以微機電加工技術製作白金觸媒微管道反應系統,利用微機電面型加工技術將白金薄膜電阻製作於基材為玻璃的晶片上,以此為反應所需的觸媒及溫度量測元件,並用體型加工技術蝕刻出微流道的上蓋板相結合成微管道反應系統(micro channel reactor),本研究以1000μm、400μm及40μm的白金觸媒微管進行測試,並利用微管道管壁上觸媒表面降低反應活化能的特性來維持反應,此微反應系統利用氫氣與氧氣在白金觸媒平板上的放熱反應作為能量的來源。此外本研究利用LIGA-like技術在400μm的管道內製作微觸媒柱狀結構,增加其觸媒反應面積。在不同預熱溫度及當量比下,研究微管道內觸媒釋熱反應。由於微管道內平均單位體積燃料所分配到的觸媒面積隨尺度的縮小而增加,因此微尺度觸媒反應較大尺度更激烈,初步實驗結果發現在適當燃料供給狀況下,在1000μm的白金觸媒微管道反應系統產生穩定的熱能,壁面由於反應激烈明顯觀察到紅熾現象,經由壁面之微溫度感測器量測,壁面最高溫度達到1000K以上。在40μm的管道中,發現有兩個操作極限,在流量小時,熱損失過大而導致反應無法維持;在流量大時,反應將會被吹熄。在400μm的管道中,觸媒柱狀結構增加表面面積對體積比(surface/volume ratio)從7到20.25 mm-1 ,在流速10 m/s(236 sccm)和30 m/s(789 sccm)時,最高溫可達到790 K和1050 K。
為了能夠了解流速、管道尺寸與燃氣濃度對於反應的影響,本文將這些參數的影響以相對應的時間尺度(time scale)表示,分別為停滯時間(residence time)、擴散時間(diffusion time)與特徵反應時間(characteristic reaction time),經由分析發現三種時間尺寸的相互競爭將會影響觸媒微管的反應效率。
One of the problems faced in micro-scale combustion is the limit of quenching length. The factors that influencing quenching length
limit include the loss of heat, the friction loss and the depletion of free radical. This research can utilize the characteristic that the catalyst surface on the little channel reduced the activation energy. The research take advantage of the quality that the activation energy can be reduced by the catalyst surface on the micro channel to carry out the experiment. There are three platinum catalyst micro channels which have different width ,such as 1000μm , 400μm and 40μm. The platinum catalyst micro channel reactor is fabricated by MEMS technology. The reactor uses the exothermic reaction of hydrogen and oxygen on the platinum catalyst plate as the heat source and the platinum thin film resistance deposited on a glass chip by face micro machining process as catalyst and temperature sensor. The channel is bonded with a cover plate etched by bulk micromachining technology to become a mico- channel reactor. Moreover, a micro catalytic column structure fabricated on channel with 400μm in width by LIGA-like technology to increase the reaction surface for catalyst. The research is focused on the catalytic exothermic reaction in the micro channel under different warm-up temperature and equivalents. Due to the decrease of the catalytic surface for the unit volume of fuel, the micro exothermic catalytic reaction is more violent than the macro exothermic catalytic reaction. The preliminary analysis reveals that the platinum catalyst micro channel reactor with 1000μm in width produces appropriate heat under appropriate fuel supply and the maximal wall temperature reaches more than 1000 K. There are two operation limits in the reactor with 40μm in width. Under considerably small flow rate, the heat loss is so big that the reaction cannot hold. The reaction will also blow off when the flow rate is considerably big. In the reactor with 400μm in width, the catalytic column structure increase the surface volume ratio from 7 mm-1 to 20.25 mm-1 and the maximal temperature will reach 790K and 1050K when the flow rate are 10m/s and 30m/s respectively.
In order to understand the influence of flow rate, channel size and fuel gas concentration on reaction, three time scales are presented in this thesis to stand for the three factors. They are residence time, diffusion time and characteristic time. According to our studies, three time scales will compete with each other and influence the reaction efficiency of micro catalyst channel. In micro combustion, how to improve the heat loss on wall is also worthy to be studied.
1. Masel, R. I., Shannon, M. A., Microcombustion having submillimeter critical dimensions, US Patent 6193501. (2001),
2. Srinivasan, R., Firebaugh, S.L., Hsing, I-M., Ryley, J., Jensen, M.P., and Schmidt, M.A., “Chemical Performance and High Temperature Characterization of Micromachined Chemical Reactors,” International Conference on Solid-State Sensors and Actuators. (1997),
3. Veser, G., “Experimental and Theoretical Investigation of H2 Oxidation in a High-temperature Catalytic Microreactor,” Chemical Engineering Science, vol.56, pp.1265-1273. (2001),
4. Stizki, L, Borer, K., Schuster, E., Ronney, P.D., Wussow, S., “Combustion in Microscale Heat-Recirculating Burners,” Third Asia-Pacific Conference on Combustion, Seoul, Korea, June 24-27, (2001)
5.Martuta, K., Takeda, K., Ahn, J., Borer, K., Sitzki, L, Ronney, P. D., Deutchman, O., ”Extinction Limits of Catalytic Combustion in Microchannel,” Proceeding of the Combustion Institute, Vol. 29, pp. 957-963(2001)
6. Fernandez-Pello, A. Carlos, “Micro-Power Generation Using Combustion : Issues and Approaches,” Proceeding of Combustion Institute, vol. 29. (2002),
7. Fu, H., Knobloch, A. J., Martinez, F. C., Walther, D. C., Fernandez-Pello, C., Pisano, AI. P., Liepmann, D., Miyaska, K., Maruta, K., “ Design and experimental results of small-scale rotary engines, ” Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, November 11-16, New York, NY. (2001)
8. Maruta, K., Takeda, K., Sitzki, L., Borer, K., Ronney, P. D., Wussow, S., Deutschmann, O., "Catalytic Combustion in Microchannel for MEMS Power Generation, " Third Asia-Pacific Conference on Combustion, Seoul, Korea, June 24-27, (2001)
9. H. Epstein, S.D. Senturia, O. Al-Midani, G. Anathasuresh, A. Ayon, K. Breuer, K-S Chen, F.E. Ehrich, E. Esteve, L. Frechette, G. Gauba, R. Ghodssi, C. Groshenry, S. Jacobson, J.L. Kerrebrock, J.H. Lang, C-C Lin, A. London, J. Lopata, A. Mehra, J.O. Mur Miranda, S. Nagle, D.J. Orr, E. Piekos, M.A. Schmidt, G. Shirley, S.M. Spearing,C.S. Tan, Y-S Tzeng, I.A. Waitz, “MICRO-HEAT ENGINES, GAS TURBINES, AND ROCKET ENGINES-THE MIT MICROENGINE PROJECT,” American Institute of Aeronautics and Astronautics(1997)
10. F. Ochoa, C. Eastwood, P. D. Ronney, B. Dunn, “Thermal transpiration based microscale propulsion and power generation devices,” 7th International Microgravity Combustion Workshop, Cleveland, OH, June . (2003)
11. Ahn, J., Eastwood, C., Sitzki, L., Ronney, P. D., “Gas-phase and catalytic combustion in heat-recirculating burners,” Proceedings of the Combustion Institute, Vol. 30. (2003)
12. Alan H. Epstein, Stuart A. Jacobson, Jon M. Protz, Luc G. Frechette (2000)“SHIRTBUTTON-SIZED GAS TURBINES: THE ENGINEERING CHALLENGES OF MICRO HIGH SPEED ROTATING MACHINERT,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinert (ISROMAC-8), Honolulu, HI, March
13. Amit Mehra, Arturo A. Ayo’n, Ian A. Waitz, Martin A. Schmidt “Microfabrication of High-Temperature Silicon Devices Using Wafer Bonding and Deep Reactive Ion Etching, ” IEEE JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 8, NO. 2,JUNE(1999)
14. Cohen, A., Ronney, P. D., Frodis, U., Sitzki, L, Meiburg, E., Wussow, S., "Microcombustor and combustion-based thermoelectric microgenerator," U.S. Patent No. 6,613,972, Sept. 2. (2003)
15. Cheng, T.S., Chao, Y.C., Wu, C.Y., Chen, G.B., Yuan, T., and Leu, T.S., , “Raman-LIPF Measurement of Temperature, Major Species, and OH in a Laminar Hydrogen Jet Diffusion Flame,” 中華民國燃燒學會第十三屆學術研討會.(2003)
16. David J. Quiran, I-Ming Hsing, Aleksander J. Franz, Klavs F. Jensen, Martin A. Schmidt, “Design issues for membrane-based, gas phase microchemical systems,” Chemical Engineering Science 55(2000)
17. Veser, “Experimental and theoretical investigation of H2 oxidation in a high-temperature catalytic microreactor, ” Chemical Engineering Science 56 1265-1273 (2001)
18. Klvas F. Jensen, “Microreaction Engineering – Is Small Better?, ” Chemical Engineering Science, vol.56, pp.293-303. (2001)
19. Laxminarayan L. Raja , Robert J. Kee ,Olaf Deutschmann ,Juergen Warnatz ,Lanny D. Schmidt “A critical evaluation of Navier-Stokes, boundary-layer, and plug-flow models of the flow and chemistry in a catalytic-combustion monolith,” catalysis Today 59 47-60(2000)
20. R.Srinivasan, S.L. Firebaugh, I-M. Hsing, J. Ryley, M.P. Harold, K.F. Jensen, and M. A. Schmidt, “Chemical Performance and High Temperature Characterization Micromachined Chemical Reactors, ” International Conference on Solid-State Sensors and Actuators, Chicago, June 16-19, (1997)
21. Ronney, P. D., "Analysis of non-adiabatic heat-recirculating combustors," Combustion and Flame, Vol 135, pp. 421-439. (2003)
22. Vican, J., Gajdeczko, B.F., Dryer, F.L., Milius, D.L., and Aksay, I.A., “Development of a Microreactor as a Thermal Source for MEMS Power Generation,” Proceeding of Combustion Institute, vol. 29 (2002)
23. Weinberg, F. J., Rowe, D. M., Min, G., Ronney, P. D., "On thermoelectric power conversion from heat re-circulating combustion systems," Proceedings of the Combustion Institute, Vol. 29, pp. 941-947. (2002)
24. Yei-Chin Chao, Guan-Bang Chen, Chia-Juei Hsu, Tzong-Shing Leu, Chih-Yung Wu, “Operational Characteristics of Catalytic Combustion in a Platinum Micro Tube, ” ICDERS, July 27-Aug. 1, Hakone, Janpan (2003)
25. 陳冠邦, “氣化生質能於白金蜂巢式反應器之觸媒燃燒研究,” 國立成功大學航空太空工程學系博士論文 (2002)
26.許家睿, “觸媒穩駐燃燒之初步研究,” 國立成功大學航空太空工程學系碩士論文(1998).
27.廖仁瑞, “微機電技術製作之白金觸媒反應系統的研發,” 國立成功大學航空太空工程學系碩士論文. (2002),
28.鄭藏勝, 趙怡欽, 吳志勇, 陳冠邦, 袁曉峰, 呂宗行, “應用雷射診測技術於微反應系統之初步研究,” 中華民國燃燒學會第十三屆學術研討會. (2003),
29. 莊達人,“VLSI 製造技術”,四版,高立圖書,台北縣 (2001)
30. 楊啟榮, 強玲英, 黃奇聲, “微系統LIGA 製程之精密電鑄技術,” 科儀新知, 第二十一卷, 第六期, pp.15-27