簡易檢索 / 詳目顯示

研究生: 游俊達
Yu, Chun-Ta
論文名稱: 不同指叉狀電極於氮化銦鎵系列太陽能電池之功率損失研究
The study of power loss for InGaN-based solar cells with various interdigitated electrodes
指導教授: 蘇炎坤
Su, Yan-Kuin
共同指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 81
中文關鍵詞: 太陽能電池指叉電極氮化銦鎵
外文關鍵詞: solar cell, interdigitated electrodes, InGaN
相關次數: 點閱:93下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,吾人討論不同金屬電極對於氮化銦鎵系列太陽能電池在電性上和功率損失上的影響。利用有機金屬化學氣相沉積系統成長氮化銦鎵系列太陽能電池。吾人設計、製作各種不同指叉電極並計算每一個電極圖型的功率損失。在電極設計中有三根、六根以及十二根類型的指叉電極,將其命名為Therr-Fingers, Six-Fingers, Twelve-Fingers。在電極圖型的設計中,變化指叉的寬度從10μm變化至30μm。由實驗中可以發現太陽能電池的電特性會隨著指叉根數和寬度的減少而變較佳,短路電流密度會隨著指叉電極的根數和寬度減少而增加。開路電壓和填充因子並不會因為不同的電極圖型而有所變化。根據功率損失的計算,金屬電極遮蔽造成的功率損失為最大,依序為片電阻的功率損失、金屬和半導體接面的功率損失、副柵線電極的功率損失和主柵線電極的功率損失在我們設計的指叉電極中。總功率損失會隨著指叉電極的根數和寬度減少而變小。由此可知指叉電極的最佳參數可以從功率損失的計算而獲得,且計算的結果和實際元件的量測有很好的一致性。而最佳的指叉電極為3根其指叉寬度為10μm。並且片電阻的功率損失為影響總功率損失的重要因素之一。片電阻的阻值會直接影響片電阻的功率損失。如能有效地降低片電阻值,以致片電阻的功率損失減少。依據這樣的概念,我們成長了具有較低片電阻的C試片比起原來的A試片。C試片的片電阻為 6.38×104 Ω/□; A試片的片電阻 2.27×105 Ω/□。經由功率損失的計算可得,C試片和A試片的片電阻的功率損失為2.24×10-5 mW/cm2 和1.4×10-4 mW/cm2。當片電阻被改善71%,其功率損失可以被改善84%。
    利用功率損失的模擬,我們可以預測不同指叉電極的功率損失和輸出功率並且找尋最佳的指叉電極。由於太陽能電池操作在不同的最大電流情況下,其電極的最佳設計是需要被調整的。利用模擬的方式來討論這個現象,目的是找尋出各別電流下的最佳電極。而操作在不同的最大電流下,應用其最佳化電極,其各別的輸出功率百分比可以達七十以上。

    In this thesis, we discuss the influences of various contact patterns on electrical characteristics and power loss for InGaN-based solar cells grown. by Metal organic chemical vapor deposition (MOCVD). Solar cells with various interdigitated electrodes are fabricated and calculated the power loss for each contact pattern. The contact patterns are applied to solar cells with 3, 6 , 12 fingers in a bus bar, denoted as Three-Fingers, Six-Fingers , and Twelve-Fingers. The finger width (wf) is varied from 10 to 30 μm. It is found that decreasing number and width of fingers improve the electrical performance. The short-circuit current density increases with the decreasing number and width of fingers, whereas the open-circuit voltage and fill factor did not significantly vary. According to calculation of power loss, it found that Pshadow is larger than Psheet, Pcontact, Pfinger, and Pbus in these various patterns samples. Total power loss decreases with the finger width and finger number decreasing. Therefore, the best contact pattern is Three-Fingers with finger width of 10μm. The best contact pattern obtained from calculation of power loss is in agreement with that obtained from the electrical analyses. From the calculation of power loss for various contact patterns, Psheet is one of important factors in total power loss. The sheet resistance affects Psheet, and we can decrease the sheet resistance in diffused layer to low the Psheet. From the concept, we grow the sample C with lower sheet resistance compared to sample A. The sheet resistance of sample A is 2.27×105 Ω/□. The sheet resistance of sample C is 6.38×104 Ω/□. From the calculation of sheet resistance loss, Psheet of sample A and sample C is 1.4×10-4 and 2.24×10-5, respectively. When the sheet resistance is improved 71%, and Psheet can be improved 84%.
    By simulation of power loss, we can predict the total power loss and power output with various contact patterns, and find optimization of front contact. Since solar cells work at different maximum current density (Jm), the optimization of front contact is need to be adjusted. We will discuss the phenomenon by simulation, in order to find the optimal front contact at each Jm. With the optimization of front contact, the percentage of power output is larger than 70% at each different Jm.

    Abstract (in Chinese) Ι Abstract (in English) Ⅲ Acknowledgements Ⅴ Contents Ⅵ List of Table Ⅸ List of Figure XΙ Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation 3 References 5 Chapter 2 Basic Theory and Measurement System 6 2-1 Basic principle of solar cell 6 2-2 The equivalent circuit analysis of the solar cell 7 2-3 Measurement equipments 10 2-3.1 X-ray Diffraction 10 2-3.2 Photoluminescence (PL) measurement 10 2-3.3 Hall measurement 11 2-3.4 Solar simulator 12 References 18 Chapter 3 Calculation of Power Loss For Solar Cells 19 3-1 Solar cell series resistance components 19 3-1.1 The sheet resistance of top layer 20 3-1.2 The contact resistance at interface 20 3-1.3 Resistance of fingers and bus bars 23 3-2 Calculation of power loss for various interdigitated electrodes 24 3-2.1 Contact pattern design 24 3-2.2 Sheet resistance loss 24 3-2.3 Contact resistance loss 26 3-2.4 Finger resistance loss 27 3-2.5 Bus bar resistance loss 28 3-2.6 Shadow loss 30 3-2.7 Numerical analysis of power loss 31 References 37 Chapter 4 Analysis of InGaN-based solar cells with various contact patterns 39 4-1 Fabrication process of p-i-n solar cells 39 4-2 The structure of InGaN-based solar cells 41 4-3 The electrical characteristics with various contact patterns 42 4-4 Analysis of power loss for various contact patterns 44 4-5 Compared with different diffused layers 47 4-6 Optimization of front contact for solar cells by simulation 48 4-6.1 Optimization of the finger width 48 4-6.2 Optimization of front contact at different maximum current density 49 References 77 Chapter 5 Conclusion and Future Work 79 5-1 Conclusion 79 5-2 Future work 81

    Chapter 1
    References:
    [1] W. G. Adams, R. E. Day, “The action of light on selenium,” vol. 25, 1876 - 1877, pp. 113-117, 1876
    [2] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., vol. 80, no. 21, pp. 3967–3969, 2002
    [3] J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, E.E. Haller, Hai Lu, and William J. Schaff, “Superior radiation resistance of In1ÀxGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, no. 10, 2003
    [4] O. ani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization f GaN/InGaN solar cells,” Appl. Phys. Lett., vol. 91, no. 13, pp. 132117-1–132 117-3, Sep. 2007
    [5] S. X. Li, K. M. Yu, J. Wu, R. E. Jones, W. Walukiewicz, J. W. Ager, III,
    E. E. Haller, H. Lu, and W. J. Schaff, “Fermi-level stabilization energy in group III nitrides,” Phys. Rev. B, Condens. Matter, vol. 71, no. 16, pp. 161 201-1–161 201-4, Apr. 2005
    [6] N. A. El-Masry, E. L. Piner, S. X. Liu, and S.M. Bedair, “Phase separation n InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 72, no. 1, pp. 40–42, Jan. 1998.
    [7] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, J. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 71, 2572, 1997
    [8] R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl.
    Phys. Lett. 70, 1089 , 1997
    [9] L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, Appl. Phys. Lett. 89, 111111, 2006

    Chapter 2
    References:
    [1] S. M. Sze, “Semiconductor Devices Physics and Technology,” , 2003
    [2] S. S. Chen, “Effects of antireflection coating and prismatic cover on Ⅲ-Ⅴ solar cell performance M. S. Thesis,” CYCU, Taiwan, R.O.C, 2005
    [3] 莊家琛, “太陽能工程-太陽能電池篇”, 全華出版社, 2005
    [4] M. P Thekackra, “The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft”, NASA Technical Report
    (1970).
    [5] D. A. Neamen, “Semiconductor Physics and Devices” , 2003

    Chapter 3
    References:
    [1] H. B. Serreze, “Optimizing solar cell performance by simultaneous consideration of grid pattern design and interconnect configurations,” 13th IEEE PVSC, pp. 609-614, 1978
    [2] A. R. Burgers, J. A. Eikelboom and H. H. C. de Moor, “Optimization of metallization patterns for yearly yield,” 26th IEEE Photovoltaic Specialists Conference, Anaheim, IEEE, pp. 219-222, 1997
    [3] A. Cole at al “Optimisation of the Front Contact for Low to Medium Concentrations in LGBC Silicon Solar Cells,” Proceedings of the 15th International Photovoltaic Science and Engineering Conference (PVSEC-15), pp. 537-338, 2005
    [4] L.J. Caballero, A et al. IEEE conference,pp. 1-4, 2008
    [5] H. Murrmann, D. Widmann, “Current crowding on metal contacts to planar devices,” IEEE Trans Electron Devices,vol. ED-16, pp. 1022-1024, 1969
    [6] P. L. Hower, W. W. Hooper, B. B. Cairns, R. D. Fairman, and D. A. Tremere, “The GaAs field effect transistor,” in Semiconductors and Semimetals, vol. 7A, 1971
    [7] H. H. Berger, “Contact resistance and contact resistivity,” J. Electro chem. Soc., vol. 119, pp. 507-514, 1972
    [8] G. K. Reeves and H. B. Harrison, “Obtaining the specific contact,” Electron Device Eett., vol. EDL-3, pp. 111-113, 1982
    [9] D. L. Meier and D. K. Schroder, “Its measurement and relative importance to power loss in a solar cell”, IEEE Electron Device Lett. , vol. ED-31, pp. 647-653, 1984
    [10] R. A. Serway, “Principles of Physics (2nd ed ed.),” Fort Worth, Texas; London: Saunders College Pub., p.602, 1998
    [11] T. V. Torchynska and G. P. Polupan, “Semiconductor physics,” Quantum Electron. Optoelectron., vol. 5, no. 1, pp. 63–70, 2002

    Chapter 4
    References:
    [1] A. Luque, “Solar Cells and Optics forvPhotovoltaic Concentration, chapter 4,” Adam Hilger series on optics and optoelectronics, 1989
    [2] S. Roberts, K. C. Heasman, T.M. Bruton, “The reduction of module power losses by optimisation of the tabbing ribbo,” 16th EUPVSEC, Glasgow, 2000
    [3] L.J. Caballero, P. Sanchez-Friera, B. Lalaguna, J. Alonso, MA Vazquez, “Series Resistance Modelling Of Industrial Screen-Printed Monocrystalline Silicon Solar Cells And Modules Including The Effect Of Spot Soldering,” 4th WCPVSC Hawaii, 2006
    [4] F. Recart, “Evaluaci6n de la serigrafia como tecnica de metalizaci6n para celulas solares eficientes, PhD Tesis,” Universidad del Pais Vasco, 2001
    [5] K. B¨ucher, “True module rating: Analysis of module power loss mechanisms,” in 13th EC Photovoltaic Solar Energy Conference, Nice, France, pp. 2097–2103, 1995
    [6] M. A. Green, “Solar cells: Operating Principles, Technology and Systems applications,” University of New South Wales, 1986
    [7] S. Krauter and R. Hanitsch, “New optical and thermal enchand PV-modules performing 12% better under true module rating conditions,” in 25th IEEE Photovoltaic Specialists Conference,Washington DC, United States, pp. 1323–6, 1996
    [8] J. Horzel and K. De Clerq, “Advantages of a new metallization structure for the front side of solar cells”, in 13th EC Photovoltaic Solar Energy Conference, Nice, France, pp. 1368–71, 1995
    [9] M. Verbeek and A. Metz, “Mechanically grooved highefficiency Si solar cells with self-aligned metallization,” in 25th IEEE Photovoltaic Specialists Conference, Washington DC, United States, pp. 521–4, 1996
    [10] A.W. Blakers, “Shading losses of solar-cellmetal grids,” J. Appl. Phys., vol. 71, no. 10, pp. 5237–41, 1992

    下載圖示 校內:2015-08-30公開
    校外:2020-02-20公開
    QR CODE