簡易檢索 / 詳目顯示

研究生: 陳柏州
Chen, Po-Chou
論文名稱: 多資產離散式障礙選擇權評價--Recursive Integral Method
指導教授: 王明隆
Wang, Ming-Long
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 51
中文關鍵詞: 分段回溯積分離散式障礙選擇權偏微分方程
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 障礙選擇權是市場上廣為流行之奇異選擇權。連續性障礙選擇權雖已發展出十分成熟之評價模型,但實務上,障礙選擇權卻大多為離散式之觀察點,以連續性模型估算離散式選擇權,將導致巨大之誤差。三項式格子點(Trinomial Lattice)及有限元素法雖可用以評價單一資產障礙選擇權,卻分別受限於結構式網格(Structured Mesh)及耗時等缺點,且易產生”Barrier-too-close”的問題。而將多重資產選擇權加上離散式障礙觀察點時,上述之方法,實務上將幾乎無法應用於其評價。
    本研究利用變數變換將較為複雜的Parabolic partial differential equation轉換成線性同質方程式(Linear homogeneous equation),因此可使用積分法(Integral Method)獲得十分精確之數值解。而利用越過障礙檢查點及分段回溯積分之觀點不但解決了一般數值方法面臨Barrier-too-close之問題;更讓演算時間隨著離散式障礙次數之增加呈線性成長而非一般數值方法演算時間呈指數成長。此外,當離散式障礙選擇權加上邊界限制條件時,積分法亦可被延伸成邊界元素法(Boundary Element Method)來求取精確數值解。
    最後,以(up and out)兩資產離散式障礙選擇權作實例驗證,並針對各個參數作敏感性分析。

    This study examines the valuation of multi-asset discrete barrier option by using recursive integral method and concept of jumping over the barrier price. An accurate solution for the PDE (Partial Differential Equation) requires a fine mesh near the discrete barriers, but when discrete barriers are applied to multiple assets, an accurate solution can barely be achieved with finite difference method and produce “barrier-too-close” problem easily. When the parabolic PDE is transformed into a Linear Homogeneous Equation, the integral method is a highly efficient method for finding an accurate numerical solution for the PDE. Beside, the recursive integral method and concept of jumping over barrier price not only solve the “barrier-too-close” problem, but also save the computational time. Furthermore, when free boundary constraints are introduced into the specifications of discrete barrier option, the integral method can be extended into the B.E.M (Boundary Element Method) for finding an extremely accurate solution for it. Finally, the method is used to value the (up and out) two-asset discrete barrier option, and sensitive analysis for parameters is presented.

    第一章 緒論--------------------------------------------------------------------------- 1 第一節 研究背景--------------------------------------------------------------------------- 1 第二節 研究動機與目的--------------------------------------------------------------------------- 2 第三節 研究架構--------------------------------------------------------------------------- 4 第二章 文獻探討--------------------------------------------------------------------------- 5 第一節 障礙選擇權介紹--------------------------------------------------------------------------- 5 第二節 多資產選權介紹--------------------------------------------------------------------------- 7 第三節 文獻介紹--------------------------------------------------------------------------- 10 第四節 文獻探討--------------------------------------------------------------------------- 15 第三章 研究方法--------------------------------------------------------------------------- 17 第一節 Black-Scholes之偏微分方程式--------------------------------------------------------------------------- 17 第二節 B-S偏微分方程轉換--------------------------------------------------------------------------- 19 第三節 分段回溯積分法(Recursive integral method) --------------------------------------------------------------------------- 26 第四章 實例分析--------------------------------------------------------------------------- 34 第一節 參數估計方法--------------------------------------------------------------------------- 34 第二節 (up and out)障礙選擇權的優點--------------------------------------------------------------------------- 35 第三節 (up and out)兩資產離散式障礙選擇權評價--------------------------------------------------------------------------- 36 第四節 敏感度分析--------------------------------------------------------------------------- 42 第五章 結論與建議--------------------------------------------------------------------------- 50 第一節 研究結--------------------------------------------------------------------------- 50 第二節 後續研究--------------------------------------------------------------------------- 51 附錄 參考文獻 表目錄 表(一) 障礙選擇權之分類------------------------------------------------ 6 表(二) 台塑與台積電之基本參數表---------------------------------------- 37 表(三) 離散檢查點與選擇權價格關係(契約一)------------------------------ 37 表(四) 離散檢查點與選擇權價格關係(契約二)------------------------------ 39 表(五) 離散檢查點與到期日pay-off為契約二形式選擇權價格關係------------- 40 表(六) 障礙價格變動與選擇權價格關係------------------------------------ 41 表(七) 股票價格變動與選擇權價格關係------------------------------------ 42 表(八) 履約價格變動與選擇權價格關係------------------------------------ 43 表(九) 股價波動率變動與選擇權價格關係---------------------------------- 44 表(十) 無風險利率變動與選擇權價格關係---------------------------------- 45 表(十一) 距離檢查時間點變動與選擇權價格關係----------------------------- 46 表(十二) 距離檢查時間點與到期日變動對選擇權價格影響--------------------- 48 表(十三) 影響(up and out)兩資產離散式障礙選擇權買權價格之因素----------- 49 圖目錄 圖(一) 二項式金字塔(Binomial Pyramid)演算圖---------------------------- 14 圖(二) 分段回溯積分示意圖---------------------------------------------- 28 圖(三) 兩資產離散式障礙選擇權積分過程 平面----------------------------- 30 圖(四) 兩資產離散式障礙選擇權積分過程 平面----------------------------- 32 圖(五) 參資產離散式障礙選擇權積分過程圖-------------------------------- 33 圖(六) 離散檢查點與選擇權價格關係圖(契約一)---------------------------- 38 圖(七) 離散檢查點與選擇權價格關係圖(契約二)---------------------------- 39 圖(八) 離散檢查點與到期日pay-off為契約二形式選擇權價格關係圖----------- 40 圖(九) 障礙價格變動與選擇權價格關係圖---------------------------------- 41 圖(十) 股票價格變動與選擇權價格關係圖---------------------------------- 43 圖(十一) 履約價格變動與選擇權價格關係圖--------------------------------- 44 圖(十二) 股價波動率變動與選擇權價格關係圖------------------------------- 45 圖(十三) 無風險利率變動與選擇權價格關係圖------------------------------- 46 圖(十四) 距離檢查時間點變動與選擇權價格關係圖--------------------------- 47 圖(十五) 距離檢查時間點與到期日變動與選擇權價格關係--------------------- 48

    國外參考文獻
    Ahn, D. S., Figlewski and B. Gao, 1999, Pricing Discrete Barrier Options with an Adaptive Mesh Model, Journal of Derivatives 2, 33-43.
    Boyle, P.P., and S.H. Lau, 1994, Bumping Up Against the Barrier with the Binomial Method, Journal of Derivatives 2, 6-14.
    Boyle, P.P., and Y.K. Tse, 1990, An Algorithm for Computing Values of Options on the Maximum or Minimum of Several Assets, Journal of Financial and Quantitative Analysis 25, 215–227.
    Broadie, M., P. Glasserman, and S. Kou, 1997, A Continuity Correction for Discrete Barrier Options, Mathematical Finance 7, 325-349.
    Chance, D., 1994, The Pricing and Hedging of Limited Exercise Caps and Spread, Journal of Financial Research 17, 561-584.
    Chang, C.C., S.L. Chang, and B.S. Hsu, 2000, Pricing Barrier Options Under Stochastic Volatility, Journal of Financial Studies 8, 41-77.
    Cheuk, T.H.F., and T.C.F. Vorst, 1996, Complex Barrier Options, Journal of Derivatives 4, 8-22.
    Cox, J.C., and S. A. Ross, 1976, The Valuation of Options for Alternative Stochastic Processes, Journal of financial Economics 3, 145-166.
    Cox, J.C., S. A. Ross, and M. Rubinstein, 1979, Option Pricing: A Simplified Approach, Journal of financial Economics 7, 229-264.
    Heynen, P., and H. Kat, 1996, Discrete Partial Barrier Options with a Moving Barrier, Journal of Financial Engineering 5, 199-209.
    Hsueh, 2001, Analysis of American Discrete Barrier Option with Stochastic Rebate, Journal of Financial Studies, Vol.9, 27-46.
    Hull, John C., 2003,Options, Futures, and Other Derivatives, 7th ed., (Prentice Hall press).
    Johnson, H., 1987, Options on the maximum or the minimum of several assets, Journal of Financial and Quantitative Analysis 22, 227–283.
    Kat, H., and L. Verdonk, 1995, Tree Surgery, RISK 8, 53-56.
    Kou, S.G, 2001, On Pricing of Discrete Barrier Options, Working paper.
    Kunitomo, N., and M. Ikeda, 1992, Pricing options with curved boundaries, Mathematical Finance 2, 275-298.
    Margrabe, W., 1978, The value of an option to exchange one asset for another, Journal of Finance 33, 86–177.
    Merton, R. C., 1973, Theory of Rational Option Pricing, Bell Journal of Economics and Management Science 4, 141-183.
    Paul Wilmott,1998, Derivatives.
    Pooley, D.M., P. A. Forsyth, K. R. Vetzal, and R. B. Simpson, 2000, An Unstructured Meshing for Two Asset Barrier Options, Applied Mathematical Finance 7, 33-60.
    Reimer, M., and K. Sandmann, 1995, A discrete time approach for European and American barrier options, Working paper.
    Ritchken, P., 1995, On pricing barrier options, Journal of Derivatives 3, 19-28.
    Rubinstein, Mark, 1991, Somewhere Over the Rainbow, RISK 4, 63-66.
    Rubinstein, M., and E. Reiner, 1991, Breaking Down the Barriers, RISK 4, 28-35.
    Rubinstein, Mark, 1994, Return to Oz, RISK 7, 67-71.
    Shen, Shih-yu, and Andrew M. L. Wang, 2001, On Stop-Loss Strategies for Stock Investments, Applied Mathematics and Computation 119, 317-337.
    Smithson, C.W., 1998, Managing financial risk: a guide to derivative products, financial engineering, and value maximization, 270-283.
    Stulz, R.M., 1982, Options on the minimum or the maximum of two risky assets: Analysis and applications, Journal of Financial Economics 10, 161–185.
    Tian, Y., 1999, Pricing Complex Barrier Options under General Diffusion Processes, Journal of Derivatives 4, 11-30.
    Topper, J., 1998, Finite Element Modeling of Exotic Options, Discussion Paper 216, University of Hannover, Version Dec. 27.
    Topper, J., 2001, Worst Case Pricing of Rainbow Options, Discussion Paper 217.
    Wang, Andrew Ming-Long, Shih-Yu Shen, and Chia-Chou Chiu, 2000, The Pricing Model of the Reset Call Option, The Sixth Asia Pacific Management Conference-The Great Asia in 21st Century, 247-254.
    Wang, Andrew Ming-Long, and Shih-Yu Shen, 2001, The Valuation of Discrete Barrier Option- a Recursive Integration Algorithm, working paper.

    國內參考文獻
    金修賢(民87),蒙地卡羅模擬於美式彩虹選擇權之應用,國立中央大學財務管理研究所碩士論文,未出版。
    陳威光(民91),衍生性金融商品-選擇權、期貨與交換,台北︰智勝文化。
    陳佩君(民90),The Pricing Model of the Discrete Barrier Options-A.P.D.E. Approach,國立成功大學工業管理研究所碩士論文,未出版。
    黃嘉斌譯(民88),選擇權定價公式手冊-The Complete Guide To Option Pricing Formulas,台北︰寰宇財金。
    邱嘉洲(民89),The Pricing Model of the Call Option with Reset Option,國立成功大學會計學研究所碩士論文,未出版。
    張傳章,張森林,許博翔(民89),隨機波動性下障礙選擇權之評價分析,中國財務學刊,8(3),41-77頁。
    戴全利(民90年),多資產離散式障礙選擇之評價,國立成功大學財務金融研究所碩士論文,未出版。
    金融風險管理: 衍生性產品-金融工程-價值最大化(民88),寰宇證券投資顧問公司譯,402-420頁。

    下載圖示 校內:立即公開
    校外:2003-06-30公開
    QR CODE