研究生: |
黃姿綺 Huang, Tzu-Chi |
---|---|
論文名稱: |
開發奈米雙殼金屬應用於拉曼增益和提升電催化轉換效率 Development of double-walled AgAuPd nanoparticles for enhancing plasmonic SERS and improving the electrocatalytic conversion efficiency |
指導教授: |
黃志嘉
Huang, Chih-Chia |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 內凹面雙殼 、合金奈米立方體 、表面增強拉曼散射 、三元元素 、甘油氧化反應 |
外文關鍵詞: | concave double-shell, alloy nanoparticle, SERS, ternary elements, glycerol oxidation |
相關次數: | 點閱:46 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
(1) Song, Y.; Xiang, C.; Bi, C.; Wu, C.; He, H.; Du, W.; Huang, L.; Tian, H.; Xia, H. pH-Dependent growth of atomic Pd layers on trisoctahedral gold nanoparticles to realize enhanced performance in electrocatalysis and chemical catalysis. Nanoscale 2018, 10, 22302-22311.
(2) Gamler, J. T.; Ashberry, H. M.; Skrabalak, S. E.; Koczkur, K. M. Random alloyed versus intermetallic nanoparticles: A comparison of electrocatalytic performance. Adv. Mater. 2018, 30, 1801563.
(3) Jing, H.; Wang, H. Structural evolution of Ag–Pd bimetallic nanoparticles through controlled galvanic replacement: effects of mild reducing agents. Chem. Mater. 2015, 27, 2172-2180.
(4) Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
(5) Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.-I.; Park, J.; Herron, J. A.; Xie, Z. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412-416.
(6) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 2007, 315, 493-497.
(7) Zhang, H.; Liu, Z.; Kang, X.; Guo, J.; Ma, W.; Cheng, S. Asymmetric AgPd–AuNR heterostructure with enhanced photothermal performance and SERS activity. Nanoscale 2016, 8, 2242-2248.
(8) Lv, H.; Sun, L.; Xu, D.; Suib, S. L.; Liu, B. One-pot aqueous synthesis of ultrathin trimetallic PdPtCu nanosheets for the electrooxidation of alcohols. Green Chem. 2019, 21, 2367-2374.
(9) Mahmoud, M. A.; O’Neil, D.; El-Sayed, M. A. Hollow and solid metallic nanoparticles in sensing and in nanocatalysis. Chem. Mater. 2014, 26, 44-58.
(10) Nugroho, F. A.; Iandolo, B.; Wagner, J. B.; Langhammer, C. Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics. ACS Nano 2016, 10, 2871-2879.
(11) Jang, J.-S.; Qiao, S.; Choi, S.-J.; Jha, G.; Ogata, A. F.; Koo, W.-T.; Kim, D.-H.; Kim, I.-D.; Penner, R. M. Hollow Pd–Ag composite nanowires for fast responding and transparent hydrogen sensors. ACS Appl. Mater. Interfaces. 2017, 9, 39464-39474.
(12) Kim, K.; Kim, K. L.; Shin, K. S. Co-reduced Ag/Pd bimetallic nanoparticles: Surface enrichment of Pd revealed by Raman spectroscopy. J. Phys. Chem. C. 2011, 115, 14844-14851.
(13) Huang, J.; Zhu, Y.; Lin, M.; Wang, Q.; Zhao, L.; Yang, Y.; Yao, K. X.; Han, Y. Site-specific growth of Au–Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement raman spectroscopy. J. Am. Chem. Soc. 2013, 135, 8552-8561.
(14) Venkatesan, P.; Santhanalakshmi, J. Designed synthesis of Au/Ag/Pd trimetallic nanoparticle-based catalysts for Sonogashira coupling reactions. Langmuir 2010, 26, 12225-12229.
(15) Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem. Rev. 2018, 118, 2249-2295.
(16) Zhang, Y.; Ahn, J.; Liu, J.; Qin, D. Syntheses, plasmonic properties, and catalytic applications of Ag–Rh core-frame nanocubes and Rh nanoboxes with highly porous walls. Chem. Mater. 2018, 30, 2151-2159.
(17) Liu, D.; Xie, M.; Wang, C.; Liao, L.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590-1599.
(18) Hong, J. W.; Kim, Y.; Wi, D. H.; Lee, S.; Lee, S. U.; Lee, Y. W.; Choi, S. I.; Han, S. W. Ultrathin free‐standing ternary‐alloy nanosheets. Angew. Chem. Int. Ed. 2016, 128, 2803-2808.
(19) Poerwoprajitno, A. R.; Gloag, L.; Cheong, S.; Gooding, J. J.; Tilley, R. D. Synthesis of low-and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis. Nanoscale 2019, 11, 18995-19011.
(20) Bai, Y.; Long, R.; Wang, C.; Gong, M.; Li, Y.; Huang, H.; Xu, H.; Li, Z.; Deng, M.; Xiong, Y. Activation of specific sites on cubic nanocrystals: a new pathway for controlled epitaxial growth towards catalytic applications. J. Mater. Chem. A. 2013, 1, 4228-4235.
(21) Romo-Herrera, J.; González, A.; Guerrini, L.; Castiello, F.; Alonso-Nuñez, G.; Contreras, O.; Alvarez-Puebla, R. A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes. Nanoscale 2016, 8, 7326-7333.
(22) Zhang, Q.; Large, N.; Wang, H. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. ACS Appl. Mater. Interfaces. 2014, 6, 17255-17267.
(23) Guerrini, L.; Lopez-Tobar, E.; Garcia-Ramos, J. V.; Domingo, C.; Sanchez-Cortes, S. New insights on the Au core/Pt shell nanoparticle structure in the sub-monolayer range: SERS as a surface analyzing tool. ChemComm. 2011, 47, 3174-3176.
(24) Chen, J.; Wiley, B.; McLellan, J.; Xiong, Y.; Li, Z.-Y.; Xia, Y. Optical properties of Pd− Ag and Pt− Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005, 5, 2058-2062.
(25) Aslam, U.; Linic, S. Addressing challenges and scalability in the synthesis of thin uniform metal shells on large metal nanoparticle cores: case study of Ag–Pt core–shell nanocubes. ACS Appl. Mater. Interfaces. 2017, 9, 43127-43132.
(26) Zhang, Y.; Wu, Y.; Qin, D. Rational design and synthesis of bifunctional metal nanocrystals for probing catalytic reactions by surface-enhanced Raman scattering. J. Mater. Chem. C. 2018, 6, 5353-5362.
(27) Nahar, L.; Farghaly, A. A.; Esteves, R. J. A.; Arachchige, I. U. Shape controlled synthesis of Au/Ag/Pd nanoalloys and their oxidation-induced self-assembly into electrocatalytically active aerogel monoliths. Chem. Mater. 2017, 29, 7704-7715.
(28) Sun, Y.; Wiley, B.; Li, Z.-Y.; Xia, Y. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J. Am. Chem. Soc. 2004, 126, 9399-9406.
(29) Lee, C.-W.; Ko, H.; Chang, S.-H. G.; Huang, C.-C. Invisible-ink-assisted pattern and written surface-enhanced Raman scattering substrates for versatile chem/biosensing platforms. Green Chem. 2018, 20, 5318-5326.
(30) Lee, C.-W.; Chia, Z. C.; Hsieh, Y.-T.; Tsai, H.-C.; Tai, Y.; Yu, T.-T.; Huang, C.-C. A facile wet-chemistry approach to engineer an Au-based SERS substrate and enhance sensitivity down to ppb-level detection. Nanoscale 2021, 13, 3991-3999.
(31) Mohammadpour, M.; Jamshidi, Z. Effect of chemical nature of the surface on the mechanism and selection rules of charge-transfer surface-enhanced Raman scattering. J. Phys. Chem. C. 2017, 121, 2858-2871.
(32) Wu, Y.; Sun, X.; Yang, Y.; Li, J.; Zhang, Y.; Qin, D. Enriching silver nanocrystals with a second noble metal. Acc. Chem. Res. 2017, 50, 1774-1784.
(33) Garlyyev, B.; Fichtner, J.; Piqué, O.; Schneider, O.; Bandarenka, A. S.; Calle-Vallejo, F. Revealing the nature of active sites in electrocatalysis. Chem. Sci. 2019, 10, 8060-8075.
(34) Zhang, H.; Zhang, X.-G.; Wei, J.; Wang, C.; Chen, S.; Sun, H.-L.; Wang, Y.-H.; Chen, B.-H.; Yang, Z.-L.; Wu, D.-Y. Revealing the role of interfacial properties on catalytic behaviors by in situ surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2017, 139, 10339-10346.
(35) Zhang, Z.; Ahn, J.; Kim, J.; Wu, Z.; Qin, D. Facet-selective deposition of Au and Pt on Ag nanocubes for the fabrication of bifunctional Ag@ Au–Pt nanocubes and trimetallic nanoboxes. Nanoscale 2018, 10, 8642-8649.
(36) Wang, Q.; Zhao, Z.; Jia, Y.; Wang, M.; Qi, W.; Pang, Y.; Yi, J.; Zhang, Y.; Li, Z.; Zhang, Z. Unique Cu@ CuPt core–shell concave octahedron with enhanced methanol oxidation activity. ACS Appl. Mater. Interfaces. 2017, 9, 36817-36827.
(37) Yang, Y.; Liu, J.; Fu, Z.-W.; Qin, D. Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153-8156.
(38) Xia, X.; Zeng, J.; McDearmon, B.; Zheng, Y.; Li, Q.; Xia, Y. Silver nanocrystals with concave surfaces and their optical and surface‐enhanced raman scattering properties. Angew. Chem. Int. Ed. 2011, 50, 12542-12546.
(39) Jiang, B.; Xu, L.; Chen, W.; Zou, C.; Yang, Y.; Fu, Y.; Huang, S. Ag+-assisted heterogeneous growth of concave Pd@ Au nanocubes for surface enhanced Raman scattering (SERS). Nano Res. 2017, 10, 3509-3521.
(40) Fan, Q.; Liu, K.; Feng, J.; Wang, F.; Liu, Z.; Liu, M.; Yin, Y.; Gao, C. Building High‐Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation. Adv. Funct. Mater. 2018, 28, 1803199.
(41) Weiner, R. G.; Smith, A. F.; Skrabalak, S. E. Synthesis of hollow and trimetallic nanostructures by seed-mediated co-reduction. ChemComm. 2015, 51, 8872-8875.
(42) Patra, B. K.; Khilari, S.; Pradhan, D.; Pradhan, N. Monodisperse AuCuSn trimetallic nanocube catalysts. ChemComm. 2016, 52, 1614-1617.
(43) Wang, X.; Chen, S.; Reggiano, G.; Thota, S.; Wang, Y.; Kerns, P.; Suib, S. L.; Zhao, J. Au–Cu–M (M= Pt, Pd, Ag) nanorods with enhanced catalytic efficiency by galvanic replacement reaction. ChemComm. 2019, 55, 1249-1252.
(44) Kumar-Krishnan, S.; Estevez-González, M.; Pérez, R.; Esparza, R.; Meyyappan, M. A general seed-mediated approach to the synthesis of AgM (M= Au, Pt, and Pd) core–shell nanoplates and their SERS properties. RSC Adv. 2017, 7, 27170-27176.
(45) Huang, W.-S.; Sun, I.-W.; Huang, C.-C. Promotion of SERS and catalytic activities with bimetallic and ternary concave nanolayers. J. Mater. Chem. A. 2018, 6, 13041-13049.
(46) Chen, A. N.; Endres, E. J.; Ashberry, H. M.; Bueno, S. L.; Chen, Y.; Skrabalak, S. E. Galvanic replacement of intermetallic nanocrystals as a route toward complex heterostructures. Nanoscale 2021, 13, 2618-2625.
(47) Chen, S.; Thota, S.; Wang, X.; Zhao, J. From solid to core@ shell to hollow Pt–Ag nanocrystals: thermally controlled surface segregation to enhance catalytic activity and durability. J. Mater. Chem. A. 2016, 4, 9038-9043.
(48) Zhang, Q.; Li, W.; Wen, L.; Chen, J.; Xia, Y. Facile Synthesis of Ag Nanocubes of 30 to 70 nm in Edge Length with CF3COOAg as a Precursor. Chem. Eur. J. 2010, 16, 10234-10239.
(49) Movchan, T.; Soboleva, I.; Plotnikova, E.; Shchekin, A.; Rusanov, A. Dynamic light scattering study of cetyltrimethylammonium bromide aqueous solutions. Colloid Journal 2012, 74, 239-247.
(50) Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. 25th Anniversary Article: Galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well‐controlled properties. Adv. Mater. 2013, 25, 6313-6333.
(51) Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. Platinum concave nanocubes with high‐index facets and their enhanced activity for oxygen reduction reaction. Angew. Chem. Int. Ed. 2011, 123, 2825-2829.
(52) Jin, M.; Zhang, H.; Xie, Z.; Xia, Y. Palladium concave nanocubes with high‐index facets and their enhanced catalytic properties. Angew. Chem. Int. Ed. 2011, 50, 7850-7854.
(53) Ahn, J.; Wang, D.; Ding, Y.; Zhang, J.; Qin, D. Site-selective carving and Co-deposition: transformation of Ag nanocubes into concave nanocrystals encased by Au–Ag alloy frames. ACS Nano 2018, 12, 298-307.
(54) Zhou, S.; Li, J.; Gilroy, K. D.; Tao, J.; Zhu, C.; Yang, X.; Sun, X.; Xia, Y. Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution. ACS Nano 2016, 10, 9861-9870.
(55) Walder, R.; Van Patten, W. J.; Adhikari, A.; Perkins, T. T. Going vertical to improve the accuracy of atomic force microscopy based single-molecule force spectroscopy. ACS Nano 2018, 12, 198-207.
(56) Li, J.; Liu, J.; Yang, Y.; Qin, D. Bifunctional Ag@ Pd-Ag nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2015, 137, 7039-7042.
(57) Aslam, M.; Fu, L.; Su, M.; Vijayamohanan, K.; Dravid, V. P. Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J. Mater. Chem. 2004, 14, 1795-1797.
(58) Senapati, S.; Ahmad, A.; Khan, M. I.; Sastry, M.; Kumar, R. Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 2005, 1, 517-520.
(59) Lai, Y.; Dong, L.; Liu, R.; Lu, S.; He, Z.; Shan, W.; Geng, F.; Cai, Y.; Liu, J. Synthesis of highly-branched Au@ AgPd core/shell nanoflowers for in situ SERS monitoring of catalytic reactions. Chin. Chem. Lett. 2020, 31, 2437-2441.
(60) Mancera, L. A.; Behm, R. J.; Groß, A. Structure and local reactivity of PdAg/Pd (111) surface alloys. Phys. Chem. Chem. Phys. 2013, 15, 1497-1508.
(61) Roudgar, A.; Groß, A. Local reactivity of metal overlayers: Density functional theory calculations of Pd on Au. Phys. Rev. B. 2003, 67, 033409.
(62) Li, M.; Cushing, S. K.; Zhou, G.; Wu, N. Molecular hot spots in surface-enhanced Raman scattering. Nanoscale 2020, 12, 22036-22041.
(63) Sun, L.; Zhang, Q.; Li, G. G.; Villarreal, E.; Fu, X.; Wang, H. Multifaceted gold–palladium bimetallic nanorods and their geometric, compositional, and catalytic tunabilities. ACS Nano 2017, 11, 3213-3228.
(64) Li, J.; Wu, Y.; Sun, X.; Liu, J.; Winget, S. A.; Qin, D. A Dual Catalyst with SERS Activity for Probing Stepwise Reduction and Oxidation Reactions. ChemNanoMat. 2016, 2, 786-790.
(65) Zhao, L.-B.; Chen, J.-L.; Zhang, M.; Wu, D.-Y.; Tian, Z.-Q. Theoretical study on electroreduction of p-nitrothiophenol on silver and gold electrode surfaces. J. Phys. Chem. C. 2015, 119, 4949-4958.
(66) Touzalin, T.; Joiret, S.; Maisonhaute, E.; Lucas, I. T. Complex electron transfer pathway at a microelectrode captured by in situ nanospectroscopy. Anal. Chem. 2017, 89, 8974-8980.
(67) Lukkari, J.; Kleemola, K.; Meretoja, M.; Ollonqvist, T.; Kankare, J. Electrochemical post-self-assembly transformation of 4-aminothiophenol monolayers on gold electrodes. Langmuir 1998, 14, 1705-1715.
(68) Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088-4093.
(69) Xu, H.; Wang, J.; Yan, B.; Li, S.; Wang, C.; Shiraishi, Y.; Yang, P.; Du, Y. Facile construction of fascinating trimetallic PdAuAg nanocages with exceptional ethylene glycol and glycerol oxidation activity. Nanoscale 2017, 9, 17004-17012.
(70) Chen, Z.; Liu, C.; Zhao, X.; Yan, H.; Li, J.; Lyu, P.; Du, Y.; Xi, S.; Chi, K.; Chi, X.; Xu, H.; Li, X.; Fu, W.; Leng, K.; Pennycook, S. J.; Wang, S.; Loh, K. P. Promoted Glycerol Oxidation Reaction in an Interface-Confined Hierarchically Structured Catalyst. Adv. Mater. 2019, 31, 1804763.
(71) Huang, W.; Kang, X.; Xu, C.; Zhou, J.; Deng, J.; Li, Y.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962.
(72) Boukil, R.; Tuleushova, N.; Cot, D.; Rebière, B.; Bonniol, V.; Cambedouzou, J.; Tingry, S.; Cornu, D.; Holade, Y. Enhanced electrocatalytic activity and selectivity of glycerol oxidation triggered by nanoalloyed silver–gold nanocages directly grown on gas diffusion electrodes. J. Mater. Chem. A. 2020, 8 (18), 8848-8856.
(73) Qin, C.; Fan, A.; Zhang, X.; Dai, X.; Sun, H.; Ren, D.; Dong, Z.; Wang, Y.; Luan, C.; Ye, J.-Y. The in situ etching assisted synthesis of Pt–Fe–Mn ternary alloys with high-index facets as efficient catalysts for electro-oxidation reactions. Nanoscale 2019, 11, 9061-9075.
(74) Yahya, N.; Kamarudin, S.; Karim, N.; Basri, S.; Zanoodin, A. Nanostructured Pd-based electrocatalyst and membrane electrode assembly behavior in a passive direct glycerol fuel cell. Nanoscale Res. Lett. 2019, 14, 1-17.