簡易檢索 / 詳目顯示

研究生: 黃姿綺
Huang, Tzu-Chi
論文名稱: 開發奈米雙殼金屬應用於拉曼增益和提升電催化轉換效率
Development of double-walled AgAuPd nanoparticles for enhancing plasmonic SERS and improving the electrocatalytic conversion efficiency
指導教授: 黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 80
中文關鍵詞: 內凹面雙殼合金奈米立方體表面增強拉曼散射三元元素甘油氧化反應
外文關鍵詞: concave double-shell, alloy nanoparticle, SERS, ternary elements, glycerol oxidation
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Abstract II 誌謝 III Contents IV List of Figures V List of Tables IX Chapter 1 Introduction 1 1.1 Multimetallic nanoparticles 1 1.2 Surface-enhanced Raman scattering 2 Chapter 2 Motivation 8 Chapter 3 Materials and Methods 10 3.1 Materials 10 3.2 Equipment 12 3.3 Methods 13 3.3.1 Preparation of the Ag nanocubes 13 3.3.2 Synthesis of the CD-AgAu nanocubes 13 3.3.3 Synthesis of the CD-AgAu:Pd nanocubes 14 3.3.4 Raman scattering measurements 15 3.3.5 Catalytic reduction of 4-nitrophenol to 4-aminophenol 16 3.3.6 In Situ SERS Monitoring of the Reduction of 4-nitrothiophenol 16 3.3.6 Electrochemical measurement 16 3.3.7 Characterization 17 Chapter 4 Results and discussion 19 4.1 Characterization of CD-AgAu and CD-AgAu:Pd 19 4.2 SERS measurement of CD-based nanostructures 29 4.3 Interfacial catalysis reaction with CD-based nanostructures 32 4.4 Electrochemical studies of CD-AgAu:Pd nanocatalysts 38 Chapter 5 Conclusion 72 Reference 74

    (1) Song, Y.; Xiang, C.; Bi, C.; Wu, C.; He, H.; Du, W.; Huang, L.; Tian, H.; Xia, H. pH-Dependent growth of atomic Pd layers on trisoctahedral gold nanoparticles to realize enhanced performance in electrocatalysis and chemical catalysis. Nanoscale 2018, 10, 22302-22311.
    (2) Gamler, J. T.; Ashberry, H. M.; Skrabalak, S. E.; Koczkur, K. M. Random alloyed versus intermetallic nanoparticles: A comparison of electrocatalytic performance. Adv. Mater. 2018, 30, 1801563.
    (3) Jing, H.; Wang, H. Structural evolution of Ag–Pd bimetallic nanoparticles through controlled galvanic replacement: effects of mild reducing agents. Chem. Mater. 2015, 27, 2172-2180.
    (4) Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
    (5) Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.-I.; Park, J.; Herron, J. A.; Xie, Z. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412-416.
    (6) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 2007, 315, 493-497.
    (7) Zhang, H.; Liu, Z.; Kang, X.; Guo, J.; Ma, W.; Cheng, S. Asymmetric AgPd–AuNR heterostructure with enhanced photothermal performance and SERS activity. Nanoscale 2016, 8, 2242-2248.
    (8) Lv, H.; Sun, L.; Xu, D.; Suib, S. L.; Liu, B. One-pot aqueous synthesis of ultrathin trimetallic PdPtCu nanosheets for the electrooxidation of alcohols. Green Chem. 2019, 21, 2367-2374.
    (9) Mahmoud, M. A.; O’Neil, D.; El-Sayed, M. A. Hollow and solid metallic nanoparticles in sensing and in nanocatalysis. Chem. Mater. 2014, 26, 44-58.
    (10) Nugroho, F. A.; Iandolo, B.; Wagner, J. B.; Langhammer, C. Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics. ACS Nano 2016, 10, 2871-2879.
    (11) Jang, J.-S.; Qiao, S.; Choi, S.-J.; Jha, G.; Ogata, A. F.; Koo, W.-T.; Kim, D.-H.; Kim, I.-D.; Penner, R. M. Hollow Pd–Ag composite nanowires for fast responding and transparent hydrogen sensors. ACS Appl. Mater. Interfaces. 2017, 9, 39464-39474.
    (12) Kim, K.; Kim, K. L.; Shin, K. S. Co-reduced Ag/Pd bimetallic nanoparticles: Surface enrichment of Pd revealed by Raman spectroscopy. J. Phys. Chem. C. 2011, 115, 14844-14851.
    (13) Huang, J.; Zhu, Y.; Lin, M.; Wang, Q.; Zhao, L.; Yang, Y.; Yao, K. X.; Han, Y. Site-specific growth of Au–Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement raman spectroscopy. J. Am. Chem. Soc. 2013, 135, 8552-8561.
    (14) Venkatesan, P.; Santhanalakshmi, J. Designed synthesis of Au/Ag/Pd trimetallic nanoparticle-based catalysts for Sonogashira coupling reactions. Langmuir 2010, 26, 12225-12229.
    (15) Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem. Rev. 2018, 118, 2249-2295.
    (16) Zhang, Y.; Ahn, J.; Liu, J.; Qin, D. Syntheses, plasmonic properties, and catalytic applications of Ag–Rh core-frame nanocubes and Rh nanoboxes with highly porous walls. Chem. Mater. 2018, 30, 2151-2159.
    (17) Liu, D.; Xie, M.; Wang, C.; Liao, L.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590-1599.
    (18) Hong, J. W.; Kim, Y.; Wi, D. H.; Lee, S.; Lee, S. U.; Lee, Y. W.; Choi, S. I.; Han, S. W. Ultrathin free‐standing ternary‐alloy nanosheets. Angew. Chem. Int. Ed. 2016, 128, 2803-2808.
    (19) Poerwoprajitno, A. R.; Gloag, L.; Cheong, S.; Gooding, J. J.; Tilley, R. D. Synthesis of low-and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis. Nanoscale 2019, 11, 18995-19011.
    (20) Bai, Y.; Long, R.; Wang, C.; Gong, M.; Li, Y.; Huang, H.; Xu, H.; Li, Z.; Deng, M.; Xiong, Y. Activation of specific sites on cubic nanocrystals: a new pathway for controlled epitaxial growth towards catalytic applications. J. Mater. Chem. A. 2013, 1, 4228-4235.
    (21) Romo-Herrera, J.; González, A.; Guerrini, L.; Castiello, F.; Alonso-Nuñez, G.; Contreras, O.; Alvarez-Puebla, R. A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes. Nanoscale 2016, 8, 7326-7333.
    (22) Zhang, Q.; Large, N.; Wang, H. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. ACS Appl. Mater. Interfaces. 2014, 6, 17255-17267.
    (23) Guerrini, L.; Lopez-Tobar, E.; Garcia-Ramos, J. V.; Domingo, C.; Sanchez-Cortes, S. New insights on the Au core/Pt shell nanoparticle structure in the sub-monolayer range: SERS as a surface analyzing tool. ChemComm. 2011, 47, 3174-3176.
    (24) Chen, J.; Wiley, B.; McLellan, J.; Xiong, Y.; Li, Z.-Y.; Xia, Y. Optical properties of Pd− Ag and Pt− Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005, 5, 2058-2062.
    (25) Aslam, U.; Linic, S. Addressing challenges and scalability in the synthesis of thin uniform metal shells on large metal nanoparticle cores: case study of Ag–Pt core–shell nanocubes. ACS Appl. Mater. Interfaces. 2017, 9, 43127-43132.
    (26) Zhang, Y.; Wu, Y.; Qin, D. Rational design and synthesis of bifunctional metal nanocrystals for probing catalytic reactions by surface-enhanced Raman scattering. J. Mater. Chem. C. 2018, 6, 5353-5362.
    (27) Nahar, L.; Farghaly, A. A.; Esteves, R. J. A.; Arachchige, I. U. Shape controlled synthesis of Au/Ag/Pd nanoalloys and their oxidation-induced self-assembly into electrocatalytically active aerogel monoliths. Chem. Mater. 2017, 29, 7704-7715.
    (28) Sun, Y.; Wiley, B.; Li, Z.-Y.; Xia, Y. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J. Am. Chem. Soc. 2004, 126, 9399-9406.
    (29) Lee, C.-W.; Ko, H.; Chang, S.-H. G.; Huang, C.-C. Invisible-ink-assisted pattern and written surface-enhanced Raman scattering substrates for versatile chem/biosensing platforms. Green Chem. 2018, 20, 5318-5326.
    (30) Lee, C.-W.; Chia, Z. C.; Hsieh, Y.-T.; Tsai, H.-C.; Tai, Y.; Yu, T.-T.; Huang, C.-C. A facile wet-chemistry approach to engineer an Au-based SERS substrate and enhance sensitivity down to ppb-level detection. Nanoscale 2021, 13, 3991-3999.
    (31) Mohammadpour, M.; Jamshidi, Z. Effect of chemical nature of the surface on the mechanism and selection rules of charge-transfer surface-enhanced Raman scattering. J. Phys. Chem. C. 2017, 121, 2858-2871.
    (32) Wu, Y.; Sun, X.; Yang, Y.; Li, J.; Zhang, Y.; Qin, D. Enriching silver nanocrystals with a second noble metal. Acc. Chem. Res. 2017, 50, 1774-1784.
    (33) Garlyyev, B.; Fichtner, J.; Piqué, O.; Schneider, O.; Bandarenka, A. S.; Calle-Vallejo, F. Revealing the nature of active sites in electrocatalysis. Chem. Sci. 2019, 10, 8060-8075.
    (34) Zhang, H.; Zhang, X.-G.; Wei, J.; Wang, C.; Chen, S.; Sun, H.-L.; Wang, Y.-H.; Chen, B.-H.; Yang, Z.-L.; Wu, D.-Y. Revealing the role of interfacial properties on catalytic behaviors by in situ surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2017, 139, 10339-10346.
    (35) Zhang, Z.; Ahn, J.; Kim, J.; Wu, Z.; Qin, D. Facet-selective deposition of Au and Pt on Ag nanocubes for the fabrication of bifunctional Ag@ Au–Pt nanocubes and trimetallic nanoboxes. Nanoscale 2018, 10, 8642-8649.
    (36) Wang, Q.; Zhao, Z.; Jia, Y.; Wang, M.; Qi, W.; Pang, Y.; Yi, J.; Zhang, Y.; Li, Z.; Zhang, Z. Unique Cu@ CuPt core–shell concave octahedron with enhanced methanol oxidation activity. ACS Appl. Mater. Interfaces. 2017, 9, 36817-36827.
    (37) Yang, Y.; Liu, J.; Fu, Z.-W.; Qin, D. Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153-8156.
    (38) Xia, X.; Zeng, J.; McDearmon, B.; Zheng, Y.; Li, Q.; Xia, Y. Silver nanocrystals with concave surfaces and their optical and surface‐enhanced raman scattering properties. Angew. Chem. Int. Ed. 2011, 50, 12542-12546.
    (39) Jiang, B.; Xu, L.; Chen, W.; Zou, C.; Yang, Y.; Fu, Y.; Huang, S. Ag+-assisted heterogeneous growth of concave Pd@ Au nanocubes for surface enhanced Raman scattering (SERS). Nano Res. 2017, 10, 3509-3521.
    (40) Fan, Q.; Liu, K.; Feng, J.; Wang, F.; Liu, Z.; Liu, M.; Yin, Y.; Gao, C. Building High‐Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation. Adv. Funct. Mater. 2018, 28, 1803199.
    (41) Weiner, R. G.; Smith, A. F.; Skrabalak, S. E. Synthesis of hollow and trimetallic nanostructures by seed-mediated co-reduction. ChemComm. 2015, 51, 8872-8875.
    (42) Patra, B. K.; Khilari, S.; Pradhan, D.; Pradhan, N. Monodisperse AuCuSn trimetallic nanocube catalysts. ChemComm. 2016, 52, 1614-1617.
    (43) Wang, X.; Chen, S.; Reggiano, G.; Thota, S.; Wang, Y.; Kerns, P.; Suib, S. L.; Zhao, J. Au–Cu–M (M= Pt, Pd, Ag) nanorods with enhanced catalytic efficiency by galvanic replacement reaction. ChemComm. 2019, 55, 1249-1252.
    (44) Kumar-Krishnan, S.; Estevez-González, M.; Pérez, R.; Esparza, R.; Meyyappan, M. A general seed-mediated approach to the synthesis of AgM (M= Au, Pt, and Pd) core–shell nanoplates and their SERS properties. RSC Adv. 2017, 7, 27170-27176.
    (45) Huang, W.-S.; Sun, I.-W.; Huang, C.-C. Promotion of SERS and catalytic activities with bimetallic and ternary concave nanolayers. J. Mater. Chem. A. 2018, 6, 13041-13049.
    (46) Chen, A. N.; Endres, E. J.; Ashberry, H. M.; Bueno, S. L.; Chen, Y.; Skrabalak, S. E. Galvanic replacement of intermetallic nanocrystals as a route toward complex heterostructures. Nanoscale 2021, 13, 2618-2625.
    (47) Chen, S.; Thota, S.; Wang, X.; Zhao, J. From solid to core@ shell to hollow Pt–Ag nanocrystals: thermally controlled surface segregation to enhance catalytic activity and durability. J. Mater. Chem. A. 2016, 4, 9038-9043.
    (48) Zhang, Q.; Li, W.; Wen, L.; Chen, J.; Xia, Y. Facile Synthesis of Ag Nanocubes of 30 to 70 nm in Edge Length with CF3COOAg as a Precursor. Chem. Eur. J. 2010, 16, 10234-10239.
    (49) Movchan, T.; Soboleva, I.; Plotnikova, E.; Shchekin, A.; Rusanov, A. Dynamic light scattering study of cetyltrimethylammonium bromide aqueous solutions. Colloid Journal 2012, 74, 239-247.
    (50) Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. 25th Anniversary Article: Galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well‐controlled properties. Adv. Mater. 2013, 25, 6313-6333.
    (51) Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. Platinum concave nanocubes with high‐index facets and their enhanced activity for oxygen reduction reaction. Angew. Chem. Int. Ed. 2011, 123, 2825-2829.
    (52) Jin, M.; Zhang, H.; Xie, Z.; Xia, Y. Palladium concave nanocubes with high‐index facets and their enhanced catalytic properties. Angew. Chem. Int. Ed. 2011, 50, 7850-7854.
    (53) Ahn, J.; Wang, D.; Ding, Y.; Zhang, J.; Qin, D. Site-selective carving and Co-deposition: transformation of Ag nanocubes into concave nanocrystals encased by Au–Ag alloy frames. ACS Nano 2018, 12, 298-307.
    (54) Zhou, S.; Li, J.; Gilroy, K. D.; Tao, J.; Zhu, C.; Yang, X.; Sun, X.; Xia, Y. Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution. ACS Nano 2016, 10, 9861-9870.
    (55) Walder, R.; Van Patten, W. J.; Adhikari, A.; Perkins, T. T. Going vertical to improve the accuracy of atomic force microscopy based single-molecule force spectroscopy. ACS Nano 2018, 12, 198-207.
    (56) Li, J.; Liu, J.; Yang, Y.; Qin, D. Bifunctional Ag@ Pd-Ag nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2015, 137, 7039-7042.
    (57) Aslam, M.; Fu, L.; Su, M.; Vijayamohanan, K.; Dravid, V. P. Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J. Mater. Chem. 2004, 14, 1795-1797.
    (58) Senapati, S.; Ahmad, A.; Khan, M. I.; Sastry, M.; Kumar, R. Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 2005, 1, 517-520.
    (59) Lai, Y.; Dong, L.; Liu, R.; Lu, S.; He, Z.; Shan, W.; Geng, F.; Cai, Y.; Liu, J. Synthesis of highly-branched Au@ AgPd core/shell nanoflowers for in situ SERS monitoring of catalytic reactions. Chin. Chem. Lett. 2020, 31, 2437-2441.
    (60) Mancera, L. A.; Behm, R. J.; Groß, A. Structure and local reactivity of PdAg/Pd (111) surface alloys. Phys. Chem. Chem. Phys. 2013, 15, 1497-1508.
    (61) Roudgar, A.; Groß, A. Local reactivity of metal overlayers: Density functional theory calculations of Pd on Au. Phys. Rev. B. 2003, 67, 033409.
    (62) Li, M.; Cushing, S. K.; Zhou, G.; Wu, N. Molecular hot spots in surface-enhanced Raman scattering. Nanoscale 2020, 12, 22036-22041.
    (63) Sun, L.; Zhang, Q.; Li, G. G.; Villarreal, E.; Fu, X.; Wang, H. Multifaceted gold–palladium bimetallic nanorods and their geometric, compositional, and catalytic tunabilities. ACS Nano 2017, 11, 3213-3228.
    (64) Li, J.; Wu, Y.; Sun, X.; Liu, J.; Winget, S. A.; Qin, D. A Dual Catalyst with SERS Activity for Probing Stepwise Reduction and Oxidation Reactions. ChemNanoMat. 2016, 2, 786-790.
    (65) Zhao, L.-B.; Chen, J.-L.; Zhang, M.; Wu, D.-Y.; Tian, Z.-Q. Theoretical study on electroreduction of p-nitrothiophenol on silver and gold electrode surfaces. J. Phys. Chem. C. 2015, 119, 4949-4958.
    (66) Touzalin, T.; Joiret, S.; Maisonhaute, E.; Lucas, I. T. Complex electron transfer pathway at a microelectrode captured by in situ nanospectroscopy. Anal. Chem. 2017, 89, 8974-8980.
    (67) Lukkari, J.; Kleemola, K.; Meretoja, M.; Ollonqvist, T.; Kankare, J. Electrochemical post-self-assembly transformation of 4-aminothiophenol monolayers on gold electrodes. Langmuir 1998, 14, 1705-1715.
    (68) Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088-4093.
    (69) Xu, H.; Wang, J.; Yan, B.; Li, S.; Wang, C.; Shiraishi, Y.; Yang, P.; Du, Y. Facile construction of fascinating trimetallic PdAuAg nanocages with exceptional ethylene glycol and glycerol oxidation activity. Nanoscale 2017, 9, 17004-17012.
    (70) Chen, Z.; Liu, C.; Zhao, X.; Yan, H.; Li, J.; Lyu, P.; Du, Y.; Xi, S.; Chi, K.; Chi, X.; Xu, H.; Li, X.; Fu, W.; Leng, K.; Pennycook, S. J.; Wang, S.; Loh, K. P. Promoted Glycerol Oxidation Reaction in an Interface-Confined Hierarchically Structured Catalyst. Adv. Mater. 2019, 31, 1804763.
    (71) Huang, W.; Kang, X.; Xu, C.; Zhou, J.; Deng, J.; Li, Y.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962.
    (72) Boukil, R.; Tuleushova, N.; Cot, D.; Rebière, B.; Bonniol, V.; Cambedouzou, J.; Tingry, S.; Cornu, D.; Holade, Y. Enhanced electrocatalytic activity and selectivity of glycerol oxidation triggered by nanoalloyed silver–gold nanocages directly grown on gas diffusion electrodes. J. Mater. Chem. A. 2020, 8 (18), 8848-8856.
    (73) Qin, C.; Fan, A.; Zhang, X.; Dai, X.; Sun, H.; Ren, D.; Dong, Z.; Wang, Y.; Luan, C.; Ye, J.-Y. The in situ etching assisted synthesis of Pt–Fe–Mn ternary alloys with high-index facets as efficient catalysts for electro-oxidation reactions. Nanoscale 2019, 11, 9061-9075.
    (74) Yahya, N.; Kamarudin, S.; Karim, N.; Basri, S.; Zanoodin, A. Nanostructured Pd-based electrocatalyst and membrane electrode assembly behavior in a passive direct glycerol fuel cell. Nanoscale Res. Lett. 2019, 14, 1-17.

    無法下載圖示 校內:2026-10-26公開
    校外:2026-10-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE