簡易檢索 / 詳目顯示

研究生: 蔡銘倫
Tsai, Ming-Lun
論文名稱: 液體物理性質對同軸噴注器之霧化影響
The Effects of Liquid Physical Property on the Atomization of Coaxial Injectors
指導教授: 袁曉峰
Yuan, Hsiao-Feng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 61
中文關鍵詞: 同軸式噴注器霧化角SMD表面張力黏滯係數
外文關鍵詞: coaxial injector, spray angle, SMD, surface tension, viscosity
相關次數: 點閱:133下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 同軸噴注器使用液體氧化劑與氣體燃料進行混合燃燒,為了探討液體黏滯係數及表面張力對於霧化效果的影響,本研究使用50wt%甘油水溶液以及15vol%乙醇水溶液為工作流體進行實驗,以了解霧化角、核心粒徑、粒徑分布之變化。本研究採用三種實驗方法觀察同軸霧化現象:由平面雷射激發螢光(Planar Laser Induced Fluorescence, PLIF)觀測系統所得到的二維質量機率分布計算霧化角;利用粒徑分析儀觀測粒徑分布,並計算核心粒徑;使用高速攝影系統拍攝核心液柱之分解過程及變化。實驗結果顯示,降低噴流表面張力使液柱表面不穩定波較容易形成,粒徑空間分布較不均勻但平均粒徑下降,對於霧化角之影響不大。提高噴流黏滯係數將使霧化角變大、液柱表面擾動較小,液柱在下游以膜狀(Membrane)破碎,大片狀薄膜受到氣體剪切碎裂,使核心液柱快速斷裂,核心粒徑下降快速,且粒徑分布均勻。

    Coaxial injector is mainly used in the mixing and combustion between liquid oxidizer and gaseous fuel. This research focuses on the effects of viscosity and surface tension of the liquid on the spray formation from a self-designed coaxial injector. The test solutions include pure water, 50wt% glycerin in water, and ethanol 15vol% ethanol in water. The spray angle, drop size distribution, core SMD (SMD0.35), and the jet surface instability waveform of the liquid sprays are analyzed by Planar Laser Induced Fluorescence (PLIF) technique, Malvern droplet analyzer, and high-speed photography, respectively. The results show that an earlier appearance of instable wave formation on jet surface and a smaller SMD distribution of the downstream spray are observed by decreasing the surface tension of the liquid jet, however, the spray angle is shown to be insensitive to surface tension variation. By increasing the liquid viscosity, the liquid jet is more stable and less surface wave formation was observed. The jet breaks up in membrane-type into a spray. The spray has a smaller core SMD and a more even spatial distribution of the droplet size.

    摘要 I ABSTRACT II 致謝 III NOMENCLATURE X 第一章 緒論 1 1-1 前言 1 1-2 實驗動機與目的 2 1-3 文獻回顧 3 第二章 實驗設備 12 2-1 同軸噴注器機構 12 2-2 流量供應及控制系統 12 2-3 PLIF光學觀測系統 13 2-4 正面霧化影像觀察系統 14 2-5 MALVERN粒徑分析儀 14 2-6 高速攝影拍攝系統 15 第三章 實驗方法與步驟 16 3-1 實驗工作流體 16 3-2 同軸噴注器實驗操作參數 17 3-3 PLIF影像觀測方法 17 3-4 霧化角分析 18 3-5 MALVERN粒徑分析及液柱核心粒徑之計算 19 3-6 高速攝影拍攝 19 第四章 實驗結果與討論 20 4-1 改變物理性質對於霧化角之影響 20 4-2 改變物理性質對於液滴粒徑之影響 22 4-3 各物理性質液柱之高速攝影影像觀察 25 第五章 結論與未來工作 33 參考文獻 36 圖表目錄 表一 各實驗流體之物理性質 38 表二 內外管流速及所對應之速度比 38 表三 各實驗之代碼 39 圖1-1 主霧化區與次霧化區示意圖 40 圖1-2 各液柱分解型態 40 圖1-3 液柱破碎模式與雷諾數、韋伯數關係圖 41 圖2-1 同軸噴注單元設計圖 41 圖2-2 同軸噴注機構 42 圖2-3 液/氣流量供應與控制系統 42 圖2-4 PLIF系統之雷射光路設備 43 圖2-5 同軸噴注器與CCD攝影機方位示意圖 43 圖2-6 以霧化影像描繪參考線建立測量格點示意圖 44 圖3-1 霧化角計算流程 44 圖4-1 各速度比時純水之霧化角隨出口下游距離之變化 45 圖4-2 各速度比時乙醇水(低表面張力)之霧化角隨出口下游距離之變化 45 圖4-3 各速度比時甘油水(高黏滯係數)之霧化角隨出口下游距離之變化 46 圖4-4 降低噴流表面張力時(VR=5)霧化角隨出口下游距離之變化 47 圖4-5  降低噴流表面張力時(VR=15)霧化角隨出口下游距離之變化 47 圖4-6  降低噴流表面張力時(VR=25)霧化角隨出口下游距離之變化 48 圖4-7  提高噴流黏滯係數時(VR=5)霧化角隨出口下游距離之變化 48 圖4-8  提高噴流黏滯係數時(VR=15)霧化角隨出口下游距離之變化 49 圖4-9  提高噴流黏滯係數時(VR=25)霧化角隨出口下游距離之變化 49 圖4-10 降低噴流表面張力時(VR=5)SMD0.35隨出口下游距離之變化 50 圖4-11 降低噴流表面張力時(VR=15)SMD0.35隨出口下游距離之變化 50 圖4-12 降低噴流表面張力時(VR=25)SMD0.35隨出口下游距離之變化 51 圖4-13 提高噴流黏滯係數時(VR=5)SMD0.35隨出口下游距離之變化 51 圖4-14 提高噴流黏滯係數時(VR=15)SMD0.35隨出口下游距離之變化 52 圖4-15 提高噴流黏滯係數時(VR=25)SMD0.35隨出口下游距離之變化 52 圖4-16 各液柱粒徑分布關係圖 53 圖4-17 高速攝影VR=5各液柱比較圖(0mm-10mm) 54 圖4-18 高速攝影VR=0時之噴注器出口影像圖 55 圖4-19 高速攝影VR=5時之噴注器出口影像圖 55 圖4-20 高速攝影VR=0時各液柱之比較圖 56 圖4-21 高速攝影VR=5時各液柱之比較圖 57 圖4-22 高速攝影VR=15時各液柱之比較圖 58 圖4-23 高速攝影VR=25時各液柱之比較圖 59 圖4-24 高速攝影VR=30時各液柱之比較圖 60 附錄一 各操作條件下之無因次參數表 61

    1.Lefebvre,A.H,”Atomization and Spray”,Hemisphere Publishing Corporation,pp3-60,1989

    2.C. Engelbert, Y. Hardalupas and J. H. Whitelaw,” Breakup Phenomena in Coaxial Airblast Atomizers”, Mathematical and Physical Sciences, Vol. 451, No. 1941, Osborne ReynoldsCentenary Volume (Oct. 9, 1995), pp. 189-229

    3.Weber, C., “On the Disruption of Liquid Jets”, Math. Mech., Vol. 11, pp. 136, 1931

    4.Mayer, W. O. H., “Coaxial atomization of a round liquid jet in a high speed gas stream: A phenomenological study”, Experiments in Fluids, Vol.16, pp 401-410, 1994

    5.Ferraro, M., Kujala, R. J., Thomas, J.-L., Glogowski, M. J. and Micci, M. M., “Effects of GH2/LOX Velocity and Momentum Ratios on Shear Coaxial Injector Atomization”, Journal of Propulsion and Power, Vol. 18, No. 1: Technical notes, 2001

    6.Hanson, A. R., Domich, E. G., and Adams, H. S., “Shock Tube Investigation of the breakup of Drops by Air Blasts”, Phys. Fluids, Vol. 6, pp. 1070-1080,1963.

    7.Lasheras, J.C. and Hoppfinger, E. J., Liquid Jet Instability and Atomization in a Coaxial Gas Stream, Annual Review Fluid Mechanics, Vol. 32, 2000, pp. 275-308.

    8.袁曉峰,林建國,唐紹文,”剪切式同軸噴注器之霧化觀察分析 “成功大學航太所碩士論文,中華民國100年.

    9.袁曉峰,蔡博宇,”完全發展模式下雙衝擊式噴霧之霧化觀察“
    成功大學航太所碩士論文,中華民國100年

    10.Branam, R. and Mayer, W.: Atomization Characteristics on the Surface of Round Liquid Jet, Experiments in Fluids Vol. 36, 2004, pp. 528-539.

    11. Wu P-K; Tseng L-K; Faeth G. M.: Primary breakup in gas/liquid mixing layers for turbulent liquids, Atomization and Sprays, Vol. 2, pp. 295-317

    12.Z. Farrago,N. Chigier, “Morphological classification of disintegration of round liquid jets in a coaxial air stream”, Atomization and sprays vol.2,pp.137-153, 1992

    13.Yu Pan and Kazuhiko suga ,”A numerical study on the breakup process of laminar liquid jets into a gas”,Physics of Fluids 18, 2006

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE