| 研究生: |
賴育誠 Lai, Yu-cheng |
|---|---|
| 論文名稱: |
底層及磁場對(Fe1-xCox)1-yPty薄膜微結構與磁性之影響 The effects of underlayer and magnetic field on the microstructure and magnetic properties of (Fe1-xCox)1-yPty films |
| 指導教授: |
張炎輝
Chang, Yen-hwei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | 矯頑磁力 、磁場 |
| 外文關鍵詞: | coercivity, magnetic |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係以離子束濺鍍系統製備FePt/FeAg及FePt/CoAg薄膜,藉由調變不同成分比例的Fe1-xAgx或Co1-xAgx底層,以及成長FePt磁性層時,同時給予垂直膜面方向的外加磁場(~1.3 kOe),探討FePt/FeAg及FePt/CoAg薄膜在不同底層成分比例的情況,鍍膜時有外加磁場與無外加磁場的條件下,經不同條件熱處理之後,觀察薄膜的晶體結構、微結構之變化,以及對磁性質之影響。結果顯示由於Fe-Ag或Co-Ag會產生相分離,在外加磁場的情況下部分區域會有磁力線導入,再加上Ag的析出會導致FePt磁性層形成序化相需要的熱處理溫度降低。因為外加磁場降低序化溫度的效果,同時也反應在矯頑磁力值上。在400°C熱處理時,對於FePt/CoAg薄膜而言,鍍膜時有外加磁場會提升FePt/Co25Ag75矯頑磁力(Hc= 5 kOe),若沒有外加磁場的情況下矯頑磁力(Hc= 0.4 kOe)。同樣的有外加磁場情況下,若CoAg底層換成FeAg底層,則FePt/Fe20Ag80的矯頑磁力值甚至增加到10 kOe。兩者不同底層的使用,造成磁性層矯頑磁力值大幅增加,主要原因是CoAg底層中析出的Co會對FePt產生很大的影響。由二元合金Fe59Pt41中添加Co元素,添加的範圍為(Fe1-xCox)59Pt41 (x= 0, 0.2, 0.4, 0.8),觀察XRD的結果顯示Co添加的量越多,形成L10序化相的溫度就越高。但是若以Ti當底層時,薄膜的序化溫度從600°C降到500°C,實驗發現少量添加Co元素,(Fe0.8Co0.2)59Pt41/Ti薄膜的序化度反而提高,而且矯頑磁力值略微增加。另一方面,若以Pt為底層除了更容易形成序化相,更在Co添加量為x= 0.2時,(Fe0.8Co0.2)59Pt41/Pt薄膜不但具備硬磁相的矯頑磁力約4 kOe,而且有高飽和磁化量1480 emu/cm3。但是,並非所有的底層都會幫助形成序化相,若以Fe75Ni22Cr3底層,不但序化溫度沒有降低,反而讓無序相更為穩定。
The deposition of FePt films on top of a FeAg or CoAg underlayer using ion beam sputtering, where the magnetic field strength (~1.3kOe) was used to alter the deposited conditions on the growing film surface, is of particular interest in this study. The microstructures and magnetic properties of annealed FePt films were controlled by various compositions of the Fe1-xAgx or Co1-xAgx underlayer and promoted by magnetic field simultaneously. The characteristic of phase separation of Fe-Ag or Co-Ag was employed to induce an inductive magnetism region, and Ag segregation that reduced the annealing temperature required for L10-FePt. After annealing at 400°C, the FePt/CoAg films deposited under the magnetic field showed a larger coercivity (Hc= 5 kOe) than that of the film deposited without a magnetic field (Hc= 0.4 kOe). At the same time, the coercivity extensively increased to 10 kOe while the Fe20Ag80 was inplace of CoAg underlayer. The segregation of Co atoms resulted from the CoAg underlayer which could apparently influence the corresponding magnetic properties of FePt. For this reason another study is to investigate how the addition of Co to a Fe59Pt41 alloy with compositions in the range of (Fe1-xCox)59Pt41 (x= 0, 0.2, 0.4 and 0.8) affects the crystallographic ordering temperatures and magnetic properties of sputter-deposited films. Further increasing the Co content suppressed the disorder/order transformation. Interestedly, the abnormal enhancement of ordered phase (at x=0.2) correlated with introducing Ti underlayer, as characterized by X-ray diffraction. Introducing Ti underlayer not only decreased ordering temperature from 600°C to 500°C, but also increased the coercivity of the (Fe0.8Co0.2)59Pt41/Ti film due to forming ordered phase. On the other hand, Pt underlayer could promote ordering reaction. As Co concentration of x = 0.2, the (Fe0.8Co0.2)59Pt41/Pt have coercivity (Hc = 4 kOe) of ordered phase and the saturation magnetization is maximum at 1480 emu/cm3. Not all kinds of underlayer could enhance magnetic properties, if Fe75Ni22Cr3 is used as an underlayer disordered fcc-phase is stabilized.
[ 1] P. L. Lu and S. H. Charap, IEEE Trans. Magn. 30 (1994) 4230.
[ 2] D. N. Lambetth, Vacuum, 59 (2000) 522.
[ 3] S. Sun, C.B. Murray, D. Weller, Science, 287 (2000) 1989.
[4 ] Y. Sonobe, D. Weller, Y. Ikeda, K. Takano, M. E. Schabes, G. Zeltzer, H. Do, B. K. Yen, M. E. Best, J. Magn. Magn. Mater., 235 (2001) 424.
[ 5] Y. Sonobe, H. Muraoka, K. Miure, Y. Nakamura, K. Takano, H. Do, A. Moster, B. K. Yen, Y. Ikeda, N. Supper, J. App. Phys., 91 (2002) 8055.
[6 ] 金重勳, 李景明, 張慶瑞, “磁性技術手冊”, 台灣磁性技術協會(2002), 第二章.
[ 7] R.H. Kodama, J.Magn.Magn.Mater., 200 (1999) 359.
[ 8] I. M. L Billas, A. Chtelain, W. A. de Heer, J. Magn. Magn. Mater., 168 (1997) 64.
[ 9] H. Kronmuller, M. Fahnle, in “Micromagnetism and the Microstructure of Ferromagnetic solids” (Cambridge University Press, Cambridge, 2003) p. 23.
[ 10] P. Weiss, J. de Phys., 6 (1907) 661.
[ 11] R. Becker, Zeites. f. Physik, 62 (1930) 253.
[ 12] C. Kittel, Rev. of Mod. Phys., 21 (1949) 541.
[ 13] H. Kronmuller, M. Fahnle, in “Micromagnetism and the Microstructure of Ferromagnetic solids” (Cambridge University Press, Cambridge, 2003) p. 21.
[ 14] J. G. Zhu, H. N. Bertram, J. Appl. Phys., 63 (1988) 3248.
[ 15] W. Heisenberg, Zeites. f. Physik, 38 (1926) 441.
[ 16] 張志高, 橫向式高密度磁記錄媒體的原理與極限, 中華民國磁性技術協會會訊, 第二十六期, (2000) p. 11.
[ 17] H. Kronmuller, M. Fahnle, in “Micromagnetism and the Microstructure of Ferromagnetic solids” (Cambridge University Press, Cambridge, 2003) p. 389.
[ 18] R. H. Victora, W. Peng, J. Xue, J. H. Judy, J. Magn. Magn. Mater., 235 (2001) 305.
[ 19] T. Chen, IEEE Trans. Magn., 17 (1981) 1181.
[20 ] F. Bloch, Zeites. f. Physik, 74 (1932) 295.
[ 21] R. C. O’Handley, “Modern Magnetic Materials: Principles and Applications” (Wiley, New York, 2000) p. 279.
[22 ] C. Kittel, Phys. Rev. 70 (1946) 965.
[ 23] L. Neel, Comptes rendus (Paris), 224 (1947) 1488.
[24 ] E. C. Stoner and E. P. Wohlfarth, Phil. Trans., A240 (1948) 599.
[ 25] T. Itoa, Y. Iwasaki, H. Tachikawa, Y. Murakami, D. Shindo, J. Magn. Magn. Mater., 242-245 (2002) 362.
[ 26] D. J. Sellmyer, C. P. Luo, Y. Qiang, J. P. Liu, “Nanomaterials and magnetic thin films Handbook of Thin Film Materials” (San Diego, Academic, 2002) p. 337.
[ 27] S. Iwasaki, K. Takemura, IEEE Trans. Magn., 11 (1975) 1173.
[28 ] J. C. Lodder, J. Magn. Magn. Mater., 159 (1996) 238.
[ 29] T. Keitoku, J. Ariake, N. Honda, J. Magn. Magn. Mater., 235 (2001) 34.
[ 30] M. P. Sharrock, J. Appl. Phys. 76, (1994) 6413.
[ 31] P. Brissonneau, A. Blanchard, M. Schlenker, J. Laugier, J. Appl. Phys. 39 (2000) 1266.
[32 ] M. Yu, Y. Liu, A. Moser, D. Weller, D. J. Sellmyer, J. Appl. Phys. 87 (2000) 6959.
[ 33] M. Yu, Y. Liu, A. Moser, D. Weller and D. J. Sellmyer, Appl. Phys. Lett., 75 (1999) 3992.
[34 ] M. E. McHenry, D. E. Laughlin: Acta Mater. 48 (2000) 223.
[ 35] Y. Ide, T. Goto, K. Kikuchi, K. Watanable, J. Onagawa, H. Yoshida, J. M. Cadogan, J. Magn. Magn. Mater., 177-181 (1998) 1245.
[ 36] R. F. Sabiryanov, S. S. Jaswal, J. Magn. Magn. Mater., 177-181 (1998) 989.
[ 37] Y. Liu, J. P. Liu, D.J. Sellmyer, Nanostructure Mater., 12 (1999) 1027.
[38 ] R. Coehoorn, D. B. de Mooji, J. P. Duchateau, K. H. J. Buschow, J. Phys. 49 (1988) 669.
[ 39] H. Kronmuller, M. Fahnle, in “Micromagnetism and the Microstructure of Ferromagnetic solids” (Cambridge University Press, Cambridge, 2003) p.90.
[40 ] T. Shima, K. Takanashi, Y. K. Takahashi, K. Hono, Appl. Phys. Lett., 85 (2004) 2571.
[ 41] B. D. Cullity, “Introduction to magnetic materials” (Addison-Wesley, 1972) p.387.
[ 42] Y. K. Takahashi, K. Hono, Appl. Phys. Lett., 84 (2004) 383.
[ 43] Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, K. Hono, J. Appl. Phys., 95 (2004) 2690.
[ 44] T. Goto, Y. Ide, H. Abe, K. Watanabe, J. Onagawa, H. Yoshida, J. Magn. Magn. Mater., 198-199 (1999) 486.
[ 45] J. P. Liu, C. P. Luo, Y. Liu, D. J. Sellmyer, Appl. Phys. Lett., 72 (1998) 483.
[ 46] J. P. Liu, Y. Liu, R. Skomski, D. J. Sellmyer, IEEE Trans. Magn., 35 (1999) 3241.
[47 ] B. Zhang, M. Lelovic, W.A. Soffa, Scr. Metall. Mater. 25 (1991) 1577.
[ 48] Y.Q. Gao, S.H. Whang, Scr. Metall. Mater. 31 (1994) 1583..
[49 ] Z. L. Zhao, J. P. Wang, J. S. Chen, J. Ding, Appl. Phys. Lett. 81 (2002) 3612.
[50 ] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schweickert, J. L. Thiele, M. F. Doerner: IEEE Trans. Magn. 36 (2000) 10.
[ 51] T. Burkert, L. Nordstrom, O. Eriksson, O. Heinonen, Phys. Rev. Lett., 93 (2004) 0272031.
[ 52] V. A. Vas’ko, J. O. Rantschler, M. T. Kief, IEEE Trans. Magn. 40 (2004) 2335.
[ 53] A. Hutten, D. Sudfeld, I. Ennen, G. Reiss, K. Wojczykowski, P. Jutzi, J. Magn. Magn. Mater., 293 (2005) 93.
[ 54] E. W. Singleton, P. B. Narayan, W. Xiong, R. Raman and H. L. Hoo, J. Appl. Phys. 85 (1999) 5840.
[ 55] J. M. MacLaren, S. D. Willoughby, M. E. McHenry, B. Ramalingam, S. G. Sankar, IEEE Trans. Magn., 37 (2001) 1277.
[ 56] J. C. Woolley, B. Bates, J. Less-Common Metals, 1 (1959) 382.
[ 57] H. Kanazawa, G. Lauhoff, and T. Suzuki, J. Appl. Phys. 87 (2000) 6143.
[ 58] F. T. Yuan, S. N. Hsiao, W. M. Liao, S. K. Chen, Y. D. Yao, J. Appl. Phys., 99 (2006) 08E915-1-08E915-3.
[59 ] B. Zhang, W.A. Soffa, IEEE Trans. Magn. 27 (1991) 5328.
[60 ] T. B. Massalski, “Binary alloy phase diagrams”, (ASM, Materials Park, 1990).
[ 61] P. Villars, L. D. Culvert, “Pearson’s Handbook of Crystallographic Data for Intermetallic Phase” (ASM, Materials Park, 1991).
[ 62] D. A. Porter, K. E. Easterling, “Phase Transformations in Metals and Alloys, second edition” (Chapman & Hall, New York, 1981) p.11.
[ 63] E.A. Guggengeim, “Mixtures” (Clarendon Press, Oxford, 1952).
[ 64] L. Chen, Y. Wang, A. G. Khachaturyan, Philos. Mag. Lett. 65 (1992) 15.
[ 65] R. A. Ristau, K. Barmak, K. R. Coffey, J. Mater. Res., 14 (1999) 3263.
[ 66] E. Hornbogen, Metall. Trans. A , 10A (1979) 947.
[ 67] P. T. L. Minh, N. P. Thuy, N. D. Van, N. T. N. Chan, J. Magn. Magn. Mater., 239 (2002) 335.
[68 ] B. D. Cullity, “Elements of X-ray Diffraction” (Addison-Wesley, 1972) p.121.
[ 69] K. Barmak, J. Kim, S. Shell, E. B. Svedberg, J. K. Howard, Appl. Phys. Lett. 80 (2002) 4268.
[ 70] B. E. Warren, “X-ray Diffraction” (Addison-Wesley) Ch. 12
[71 ] Y. S. Choi, A. K. Petford-Long, R. C. C. Ward, J. Appl. Phys. 99 (2006) 083903.
[ 72] 許樹恩, 吳泰伯, “X光繞射原理與材料結構分析”, 中國材料科學學會 (1993), 第十三章.
[ 73] W. Roberts, Acta Met., 2 (1954) 597.
[ 74] M. Chen, D. E. Nikles, Nano Lett. 2 (2002) 211.
[ 75] R. F. C. Farrow,D. Weller, R. F. Marks, M. F. Toney, S. Hom, G. R. Harp, A. Cebollada, Appl. Phys. Lett. 69 (1996) 1166.
[ 76] D. Ravelosona, C. Chappert, V. Mathet, H. Bernas, J. Appl. Phys., 87 (2000)5771.
[ 77] C. Petit, S. Rusponi, H. Brune, J. Appl. Phys. 95 (2004) 4251.
[78 ] T. Ichitsubo, K. Tanaka, M. Koujina, M. Kawashima, M. Hirao, Jpn. J. Appl. Phys. 43 (2004) 273.
[79 ] K. Tanaka, T. Ichitsubo ,M. Koiwa, Mater. Sci. Eng. A, 312 (2001) 118.
[ 80] K. Watanabe, H. Masumoto , Trans., JIM. 24 (1983) 627.
[81 ] K. Watanabe, H. Masumoto, Trans., JIM. 26 (1985) 362.
[82 ] Y. Tanaka, N. Kimura, K. Hono, K. Yasuda, T. Sakurai, J. Magn. Magn. Mater., 170 (1997) 289.
[ 83] S. Sun, E. E. Fullerton, D. Weller, and C. B. Murray, IEEE Trans. Magn., 37 (2001) 1239.
[ 84] M. H. Hong, K. Hono, M. Watanabe, J. Appl. Phys. 84 (1998) 4403.
[ 85] C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy, D. E. Laughlin, J. Appl. Phys. 92 (2002) 6104.
[86 ] S. C. Chen, P. C. Kuo, A. C. Sun, C. T. Lie, W. C. Hsu, Mater. Sci. Eng. B, 88 (2002) 91.
[87 ] T. Suzuki, K. Ouchi, IEEE Trans. Magn., 37 1283 (2001).
[88 ] D. H. Ping, M. Ohnuma, K. Hono, M. Watanabe, T. Iwasa, and T. Masumoto, J. Appl. Phys. 90 (2001) 4708.
[89 ] T. Shimatsu, J. C. Lodder, Y. Sugita, and Y. Nakamura, IEEE Trans. Magn., 35 (1999) 2697.
[90 ] C. M. Kuo, P. C. Kuo, W. C. Hsu, C. T. Li, and A. C. Sun, J. Magn. Magn. Mater., 209 (2000) 100.
[ 91] Y.K. Takahashi, M. Ohnuma, K. Hono, J. Magn. Magn. Mater., 246 (2002) 259.
[92 ] S. Mitani, K. Takanashi, M. Sano, H. Fujimori, A. Osawa, H. Nakajima, J. Magn. Magn. Mater., 148 (1995) 163.
[ 93] K. R. Coffey,M. A. Parker, K. Howard, IEEE Trans. Magn., 31 (1995) 2737.
[94 ] T. Seki, T. Shima, K. Takanashi, Y. Takanashi, E. Matsubara, K. Hono, Appl. Phys. Lett., 82 (2003) 2461.
[ 95] M. R. Visokay, R. Sinclair, Appl. Phys. Lett., 66 (1995) 1962.
[ 96] M. Watanabe, M. Homma, Jpn. J. Appl. Phys., Part 2 35 (1996) L1264.
[ 97] B. M. Laison, B. M. Clemens, Appl. Phys. Lett., 63 (1993) 1438.
[ 98] D. H. Wei, T. S. Chin, K. L. You, Y. Liou, Y. D. Yao, J. Magn. Magn. Mater., 303 (2006) e265-e269.
[ 99] B.Y. Wong, J.F. Ying, K. Johnson: IEEE Trans. Magn., 36 (2000) 2360.
[ 100] S.C. Chen, P.C. Kuo, S.T. Kuo, A.C. Sun, C.T. Lie, C.Y. Chou: Mater. Sci. Eng. B, 98 (2003) 244.
[ 101] Y. N. Hsu, S. Jeong, D. E. Laughlin and D. N. Lambeth, J. Appl. Phys., 89 (2001) 7068.
[ 102] Y. N. Hsu, S. Jeong, D. E. Laughlin, D. N. Lambeth, J. Magn. Magn. Mater., 260 (2003) 282.
[ 103] X. H. Xu, H. S. Wu, F. Wang, X. L. Li, Appl. Sur. Sci., 233 (2004) 1.
[104 ] D. H. Wei, S. C. Chou, T. S. Chin, C. C. Yu, Y. Liou, Y. D. Yao, J. Appl. Phys. 97 (2005) 10N120-1.
[105 ] Z. L. Zhao, J. Ding, K. Inaba, J. S. Chen, J. P. Wang, Appl. Phys. Lett., 83 (2003) 2196.
[106 ] Z. L. Zhao, J. S. Chen, J. Ding, K. Inaba, J. P. Wang, J. Magn. Magn. Mater., 282 (2004) 105.
[ 107] H. S. Chang, K. H. Shin, T. D. Lee, J. K. Park, J. Magn. Magn. Mater., 177-181 (1998) 913-914.
[108 ] B. Abeles, P. Sheng, M. D.Coutts, Y. Arie, Adv. Phys., 24 (1975) 407.
[ 109] C. Kittel, Rev. Mod. Phys., 21 (1949) 541.
[ 110] T. Chen, IEEE trans. Magn., 17 (1981) 1181.
[ 111] B. D. Cullity, “Introduction to magnetic materials” (Addison-Wesley, 1972) p.290.
[ 112] Donald L. Smith, in “Thin-Film Deposition Principles and Practice” (McGraw-Hill, 1994) p.592
[ 113] L. Eckertova and T. Ruzicka, “Diagnostics and application of thin films” (Institute of physics publishing, 1993) Chap.1&2.
[ 114] P. E. Kelly, K.O’Grady, P.I. Mayo, R. W. Cantrell, IEEE Trans. Magn., 25 (1989) 388.
[ 115] Y. K. Takahashi, M. Ohnuma, K. Hono, Jpn. J. Appl. Phys., 40 (2001) L1367.
[ 116] A. Z. Men'shikov, V. A. K. Yu. A. Dorofeyev, S. K. Sidorov, Fiz. Met. Metalloved., 38 (1974) 505.
[ 117] R. A. Ristau, K. Barmak, L. H. Lewis, K. R. Coffey, J. K. Howard, J. Appl. Phys., 86 (1999) 4527.
[ 118] V. V. Maykov, A. Y. Yermakov, G. V. Ivanov, V. I. Khrabrov, L. M. Magat, Phys. Met. Metallogr., 67 (1989) 76.
[ 119] E. A. Brandes and G. B. Brook: “Smithells metals reference book” (Butterworths and Heinemann, London, 1992) 7th ed.
[ 120] O. Kitakami, K. Ojima, Y. Maro, and H. Fujiwara, IEEE Trans. Magn., 23 (1987) 2797,.
[ 121] B. Zhang, W. A. Soffa, Phys. Stat. Sol. A, 131 (1992) 707.
[ 122] T. J. Klemmer et al., Scr. Metall. Mater., 33 (1995) 1793.
[ 123] J. P. Attane, Y. Samson, A. Marty, D. Halley, C.Beigne, Appl. Phys. Lett., 79 (2001) 794.
[ 124] V. Tupinamba Barthem, Paulo E.V. de Miranda, D. Givord, J. Magn. Magn. Mater., 226-230 (2001) 1458.
[ 125] A. Z. Men'shikov, V. A. K. Yu. A. Dorofeyev, S. K. Sidorov, Fiz. Met. Metalloved., 38 (1974) 505.
[ 126] JCPDS-International Center for Diffraction Data, Card No. 0043-1359 (1998).
[127 ] K. Barmak, J. Kim, D. C. Berry, W. N. Hanani, K. Wierman, E. B. Svedberg, J. K. Howard, J. Appl. Phys. 97 (2005) 024902.
[128 ] Y. N. Hsu, S. Jeong, D. E. Kaughlin, D. N. Lambeth, J. Magn. Magn. Mater. 260 (2003) 282-294.
[ 129] A.R. Deshpande, J.R. Blachere, J.M.K. Wiezorek, Scripta Materialia, 54 (2006) 955.
[130 ] D. A. Porter, K. E. Easterling, “Phase Transformations in Metals and Alloys”, second edition (Chapman & Hall, New York, 1981) p.19.
[ 131] R. C. O’Handley, “Modern Magnetic Materials: Principles and Applications” (Wiley, New York, 2000) p. 145.
[ 132] H. Zeng, S. Sun, T. S. Vedantam, J. P. Liu, Z. R. Dai, Z. L Wang, Appl. Phys. Lett., 80 (2002) 2583.
[ 133] H. Fukunaga, H Inoue, Jpn. J. Appl. Phys., 31 (1992) 1347.
[ 134]. M. F. Toney, W. Y. Lee, J. A. Hedstrom, A. Kellock: J. Appl. Phys., 93 (2003) 9902.
[ 135] C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veedonk, J. K. Howard, A. G. Roy, D. E. Laughlin, J. Appl. Phys., 92 (2002) 6104.
[ 136] Y.H. Huang, J. Wan, Y. Zhang, H.L. Wang, G.C. Hadjipanayis, D. Niarchos, D. Weller, J. Magn. Magn. Mater., 294 (2005) 232.
[ 137] Y. Xu, Z.G. Sun, Y. Qiang, D. J. Sellmyer, J. Magn. Magn. Mater., 266 (2003) 164.
[138 ] C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy, D. E. Laughlin, J. Appl. Phys., 92 (2002) 6104.
[139 ] C. M. Kuo, P. C. Kuo, J. Appl. Phys., 87 (2000) 419.
[140 ] I. Panagiotopoulos, S. Stavroyiannis, D. Niarchos, J. A. Christodoulides, G. C. Hadjipanayis, J. Appl. Phys., 87 (2000) 4358.
[ 141] R. Skomski and J. M. D. Coey, Phys. Rev. B, 48 (1993) 15812.
[ 142] T. Klemmer, D. Hoydick, H. Okumura, B. Zhang, W. A. Soffa, Scr. Metall. Mater., 33 (1995) 1793.
[ 143] David E. Laughlin, Leo, David N. Lambeth, IEEE Trans. Magn., 34 (1998) 1561.
[144 ] S. Stavroyiannis, J. Appl. Phys., 85 (1999) 4304.
[ 145] 程彥嘉, CoAg底層與外場對FePt磁性層結構及磁性質之影響, 國立成功大學碩士論文(2006)。
[ 146] J. Tuaillon-Combes, O. Boisron, E. Bernstein, G. Guiraud, A. Gerber, A. Milner, P. Melinon and A. Perez, Appl. Sur. Sci., 226 (2004) 321.
[ 147] B. Abeles, P. Sheng, M. D.Coutts, Y. Arie, Adv. Phys., 24 (1975) 407.
[148 ] J. A. Thornton, Am. Res. Sci., 7 (1997) 239.
[ 149]. C. Petit, J. Legrand, V. Russier, M. P. Pileni, J. Appl. Phys., 91 1502 (2002).
[150 ] N. Li, B. M. Lairson, O. H. Kwon, J. Magn. Magn. Mater., 205 (1999) 1.
[ 151] J. A. Christodoulides, P. Faber, M. Daniil, H. Okumura, G. C. Hadjipanayis, V. Skumryev, A. Simopoulos, D. Weller, IEEE Trans. Magn., 37 (2001) 1292.