簡易檢索 / 詳目顯示

研究生: 陳博奎
Chen, Po-Kuei
論文名稱: 東台灣蛇綠岩中玄武質玻璃的Nd-Hf-Pb同位素和微量元素對地體構造親緣性的制約
Trace element and Nd-Hf-Pb isotope constraints on the tectonic affinity of the basaltic glass from East Taiwan Ophiolite (ETO) fragments
指導教授: 楊懷仁
Yang, Huai-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 160
中文關鍵詞: 東台灣蛇綠岩玄武質玻璃構造親緣性南中國海菲律賓海同位素海南地函(幔)柱
外文關鍵詞: East Taiwan Ophiolite, Basaltic glass, Tectonic affinity, South China Sea, Philippine Sea, isotope, Hainan Mantle Plume
相關次數: 點閱:190下載:74
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 東台灣蛇綠岩(ETO)位於南中國海(SCS)和西菲律賓海盆(WPB)岩石圈的碰撞邊緣,其構造親緣性仍具爭議,南中國海及西菲律賓海盆的親緣性皆曾被論及。本論文提出東台灣蛇綠岩之玄武岩中玻璃的新Nd-Hf-Pb同位素和微量元素數據,並與南中國海和西菲律賓海盆的玄武岩數據比較,以對東台灣蛇綠岩構造親緣性提供制約。並重新檢視南台灣(墾丁)玄武岩的構造親緣性,以釐清這兩個外來岩塊之間的關係。最後,詳細檢視Yu等人(2022)的東台灣蛇綠岩中酸性岩的成分,並通過熔融和結晶模式計算推測其生成機制,將結果與玄武質玻璃的數據結合,以深入探討東台灣蛇綠岩的構造親緣性。針對採自台東縣關山鎮的嘉武溪和電光國小附近的25個玻璃樣本,分析主要元素、微量元素和Sr-Nd-Pb-Hf同位素比值。根據TAS圖,東台灣蛇綠岩玻璃樣本為玄武質。在原始地函標準化分布圖中,大部分樣本顯示稀土元素貧瘠或平坦的分布,分別代表正常型和過渡型洋脊玄武岩之特徵。樣品39因為其富含輕稀土而具富集型洋脊玄武岩之特徵。相較於南中國海和西菲律賓海盆的正常型洋脊玄武岩,部分東台灣蛇綠岩之正常型洋脊玄武岩具有更高放射性之Nd-Hf同位素核種,與虧損-虧損洋脊玄武岩地函(D-DMM)相似,將其稱為「極端虧損洋脊玄武岩」。另一群東台灣蛇綠岩之正常型洋脊玄武岩則具相對較少的放射性之Nd-Hf同位素核種,其Nd-Hf同位素比值與西菲律賓海盆之正常型洋脊玄武岩的比值重疊,將其稱為「虧損洋脊玄武岩」。東台灣蛇綠岩之正常型洋脊玄武岩的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb與西菲律賓海盆之正常型洋脊玄武岩的分布重疊,且這些Pb同位素比值低於南中國海之正常型洋脊玄武岩;但南中國海僅有一鑽探點,且樣本數據雷同,因而不能代表整個南中國海的正常型洋脊玄武岩。現有之南中國海和西菲律賓海盆的洋脊玄武岩之Nd-Hf -Pb同位素數據不足以闡明東台灣蛇綠岩中玻璃的構造親緣性。高度不相容元素的濃度比值,亦能指示地函來源。在Th/Ce和Nb/Ce對比176Hf/177Hf、143Nd/144Nd和206Pb/204Pb分布圖中,東台灣蛇綠岩和南中國海的正常型洋脊玄武岩皆位於虧損-虧損地函以及富集-虧損地函序列上方(Workman and Hart, 2005),成線性趨勢;西菲律賓海盆之正常型洋脊玄武岩則分布在此序列下方。此外,東台灣蛇綠岩之正常型洋脊玄武岩和南中國海之正常型洋脊玄武岩形成連續的Nb/Ce-Nb和Th/Ce-Th線性趨勢,而西菲律賓海盆偏向較低的Nb/Ce和Th/Ce;此特徵有利於東台灣蛇綠岩和南中國海的構造親緣性。熔體混合模式計算顯示東台灣蛇綠岩中玄武質玻璃的176Hf/177Hf、143Nd/144Nd和206Pb/204Pb以及 Nb/Ce 和 Th/Ce的變化,大致可以混合虧損地函和富集地函之熔體來解釋。「極端虧損洋脊玄武岩」的成分需要虧損-虧損洋脊玄武岩地函和海南玄武質之熔體混合,「虧損洋脊玄武岩」需虧損地函熔體以及下部大陸地殼物質的混合解釋之,過渡型洋脊玄武岩的成分可以透過混合富集-虧損地函、虧損地函以及海南玄武岩的熔體而成。因此,海南玄武質熔體的參與強化東台灣蛇綠岩玻璃和南中國海的親緣性,並暗示海南地函(幔)柱的規模。相對於由東台灣蛇綠岩玻璃成分而提出的南中國海親緣性,Yu等人(2022)則基於東台灣蛇綠岩中酸性岩(斜長花崗岩)的成分,認為該酸性岩的埃達克岩特徵乃隱沒之南中國海地殼的部分熔融導致。然而,三項證據表明東台灣蛇綠岩中酸性岩的成分並非埃達克岩的成分,包含(1)SiO2含量> 70%,(2)Sr/Y < 20伴隨低Y濃度(< 7 ppm),以及(3)缺乏K、Pb和Sr富集。基性熔體的分異結晶、輝長岩或角閃岩的部分熔融之模式計算顯示,東台灣蛇綠岩中酸性岩是由南中國海岩石圈中海水交代換質之角閃岩的含水熔融和輝長岩的熔融而生成。因此,玻璃樣本與酸性岩的成分皆顯示南中國海親緣性,據此,東台灣蛇綠岩是南中國海上部岩石圈推覆至陸塊上之物質。

    Located at the convergent margin between South China Sea (SCS) and West Philippine basin (WPB) slabs, East Taiwan Ophiolite (ETO) has been debated for its tectonic affinity. Earlier researchers considered ETO basaltic rocks as parts of accreted SCS slab. In contrast, Yu et al. (2022) argued plagiogranites from ETO showed adakitic compositions resulted from partial melting from the subducted SCS slab to postulate an affinity to the forearc of WPB slab. We analyzed 25 basaltic glass for major, trace elements and Nd-Hf-Pb isotope ratios. In the Th/Ce and Nb/Ce versus (176Hf/177Hf)i, (143Nd/144Nd)i, and (206Pb/204Pb)i plots, the N-MORB-like ETO glass and SCS N-MORB plot above the D-DMM–DMM–E-DMM array, whereas the WPB N-MORB plot below the array. Moreover, the N-MORB-like ETO glass and SCS N-MORB form continuous Nb/Ce–Nb and Th/Ce–Th trends, whereas the WPB N-MORB deviate to lower Nb/Ce and Th/Ce. These features favor a SCS affinity for the ETO N-MORB-like glass. Melt mixing calculations indicated the 176Hf/177Hf, 143Nd/144Nd, and 206Pb/204Pb as well as Nb/Ce and Th/Ce of the ETO glass can be can be produced by mixing melts from depleted mantle and Hainan basalts. The involvement of Hainan basalts strengthens the SCS affinity of the ETO glass and hints the scale of the Hainan mantle plume. The ETO felsic rocks are not adakitic and can be produced by hydrous melting of seawater metasomatized amphibolites in the SCS lithosphere, also favoring a SCS affinity. Therefore, the compositions of ETO mafic and felsic rocks both conclude a SCS affinity.

    摘要i Extended Abstractiii 致謝vii 目錄viii 表目錄x 圖目錄xi 第一章 緒論1 1.1. 蛇綠岩1 1.2. 東台灣蛇綠岩之地球化學相關研究4 1.3. 研究目的6 第二章 地質背景7 2.1. 利吉層與東台灣蛇綠岩7 2.2. 東台灣蛇綠岩的構造演化10 2.3. 採樣地點10 第三章 研究方法12 3.1. 主要元素12 3.2. 微量元素12 3.3. 淋溶方法13 3.4. 同位素純化方法15 3.4.1. Sr和Pb同位素15 3.4.2. Nd同位素17 3.4.3. Hf同位素18 3.5. 同位素測量方法21 第四章 結果22 4.1. 主要元素22 4.2. 微量元素27 4.3. Sr-Nd-Hf-Pb同位素35 第五章 討論46 5.1. 東台灣蛇綠岩中輕稀土元素貧瘠之洋脊玄武岩的構造親緣性46 5.1.1. 東台灣蛇綠岩、南中國海洋脊玄武岩、西菲律賓海盆洋脊玄武岩之正常型洋脊玄武岩的構造親緣性46 5.1.2. 東台灣蛇綠岩的地函源區之貧瘠化學特徵61 5.1.3. 東台灣蛇綠岩之正常型洋脊玄武岩的富集來源62 5.1.4. 台灣增積岩體之正常型洋脊玄武岩的親緣性70 5.1.5. 台灣增積岩體中外來岩塊之基性岩的地函源區之貧瘠化學特徵77 5.2. 東台灣蛇綠岩中輕稀土元素平坦/富集之洋脊玄武岩的構造親緣性79 5.2.1. 東台灣蛇綠岩之過渡型/富集型洋脊玄武岩的富集來源87 5.2.2. 東台灣蛇綠岩中輕稀土元素平坦/富集之洋脊玄武岩和南中國海海山在地球化學的關聯性95 5.2.3. 台灣增積岩體中基性岩和海南地函(幔)柱的親緣性99 5.3. 海南地函(幔)柱的可能影響範圍101 5.4. 東台灣蛇綠岩基性岩之地化組成特徵對共存酸性岩之成因制約110 5.4.1. 東台灣蛇綠岩斜長花崗岩成因之爭論:中洋脊型和隱沒帶型112 5.4.2. 模型計算之斜長花崗岩的可能成因117 5.4.2.1. 洋脊玄武岩漿的結晶分化作用117 5.4.2.2. 部分熔融作用123 第六章 結論139 參考文獻140 附錄155

    Anonymous. Penrose field conference on Ophiolites. Geotimes. 17, 24-25, 1972.
    Bacon, C.R., Druitt, T.H. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib. Mineral. Petrol. 98(2), 224-256, 1988.
    Barckhausen, U., Engels, M., Franke, D., Ladage, S., Pubellier, M. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Mar. Pet. Geol. 58, 599-611, 2014.
    Beard, J.S., Lofgren, G.L. Dehydration melting and watersaturated melting of basaltic and andesitic greenstones and amphibolites. J. Petrol. 29, 365-401, 1991.
    Berndt, J., Koepke, J., Holtz, F. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J. Petrol. 46(1), 135-167, 2005.
    Brophy, J.G. A study of Rare Earth Element (REE)-SiO2 variations in felsic liquids generated by basalt fractionation and amphibolite melting: a potential test for discriminating between the two different processes. Contrib. Mineral. Petrol. 156, 337-357, 2008.
    Brophy, J.G. La-SiO2 and Yb-SiO2 systematics in mid‐ocean ridge magmas: Implications for the origin of oceanic plagiogranite. Contrib. Mineral. Petrol. 158(1), 99-111, 2009.
    Brophy, J.G., Pu, X. Rare earth element–SiO2 systematics of mid-ocean ridge plagiogranites and host gabbros from the Fournier oceanic fragment, New Brunswick, Canada: a field evaluation of some model predictions. Contrib. Mineral. Petrol. 164, 191-204, 2012.
    Castillo, P.R. Adakite petrogenesis. Lithos. 134, 304-316, 2012.
    Castillo, P.R., Rigby, S.J., Solidum, R.U. Origin of high field strength element enrichment in volcanic arcs: geochemical evidence from the Sulu Arc, Southern Philippines. Lithos. 97, 271-288, 2007.
    Chang, C.-P., Angelier, J., Huang, C.-Y. Origin and evolution of a Mélange: The active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics. 325(1-2), 43-62, 2000.
    Chen, H.-Y., Yang, H.-J., Liu, Y.-H., Huang, K.-F., Takazawa, E. Tectonic affinities of the accreted basalts in southern Taiwan. J. Asian. Earth. Sci. 158, 253-265, 2018.
    Chen, Y., Niu, Y., Wang, X., Gong, H., Guo, P., Gao, Y., Shen, F. Petrogenesis of ODP Hole 735B (Leg 176) oceanic plagiogranite: Partial melting of gabbros or advanced extent of fractional crystallization? Geochem. Geophys. Geosyst. 20, 2717-2732, 2019.
    Chung, S.-L., Sun, S.-S. A new genetic model of the East Taiwan Ophiolite and its implications for Dupal domains in the North Hemisphere. Earth Planet. Sci. Lett. 109, 133-145, 1992.
    Chung, S.-L., Sun, S.-S., Tu, K., Chen, C.-H., Lee, C.-Y. Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: product of lithosphere-asthenosphere interaction during continental extension. Chem. Geol. 112, 1-20, 1994.
    Chung, S.-L., Jahn, B.-M., Chen, S.-J., Lee, T., Chen, C.-H. Miocene basalts in northwestern Taiwan: evidence for EM-type mantle sources in the continental lithosphere. Geochim. Cosmochim. Acta. 59(3), 549-555, 1995.
    Coleman, R.G., Peterman, Z.E. Oceanic plagiogranite J. Geophys. Res. 80, 1099-1108, 1975.
    Dai, B.-Z., Jiang, S.-Y., Jiang, Y.-H., Zhao, K.-D., Liu, D.-Y. Geochronology, geochemistry and Hf–Sr–Nd isotopic compositions of Huziyan mafic xenoliths, southern Hunan Province, South China: petrogenesis and implications for lower crust evolution. Lithos. 102 (1), 65-87, 2008.
    Defant, M.J., Clark, L.F., Stewart, R.H., Drummond, M.S., de Boer, J.Z., Maury, R.C., Bellon, H., Jackson, T.E., Restrepo, J.F. Andesite and dacite genesis via contrasting processes: the geology and geochemistry of El Valle Volcano, Panama. Contrib. Mineral. Petrol. 106, 309-324, 1991.
    Defant, M.J., Jackson, T.E., Drummond, M.S., De Boer, J.Z., Bellon, H., Feigenson, M. D., Maury, R.C., Stewart, R.H. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. J. Geol. Soc. London. 149 (4), 569-579, 1992.
    Deschamps, A., Lallemand, S. The West Philippine Basin: An Eocene to Early Oligocene back-arc basin opened between two opposed subduction zones. J. Geophys. Res. 107, 2322-2346, 2002.
    Dewey, J.F., Bird, J.M. The origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. J. Geophys. Res. 76, 3179-3206, 1971.
    Dilek, Y., Furnes, H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 123 (3-4), 387-411, 2011.
    Dostal, J., Dupuy, C., Carron, J.P., Dekerneizon, M.L., Maury, R.C. Partition-coefficients of trace elements: application to volcanic-rocks of St-Vincent, west-Indies. Geochim. Cosmochim. Acta. 47, 525-533, 1983.
    Dunn, T., Sen, C. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochim. Cosmochim. Acta. 58(2), 717-733, 1994.
    Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M., Handler, M.R. A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem. Geol. 134 (4), 311-326, 1997.
    Flagler, P.A., Spray, J.G. Generation of oceanic plagiogranite by amphibolite anatexis in oceanic shear zones. Geology. 19, 70-73, 1991.
    Flower, M.F.J., Zhang, M., Chen, C.-Y., Tu, K., Xie, G.-H. Magmatism in the South China Basin 2. Post-spreading Quaternary basalts from Hainan Island, south China. Chem. Geol. 97, 65-87, 1992.
    Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., Schilling, J.G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489-518, 2013.
    Gillis, K., Coogan, L.A. Anatectic migmatites from the roof of an ocean ridge magma chamber. J. Petrol. 43, 2075-2095, 2002.
    Godard, M., Bosch, D., Einaudi, F. A MORB source for low-Ti magmatism in the Semail ophiolite. Chem. Geol. 234, 58-78, 2006.
    Gonzalez-Partida, E., Levresse, G., Carrillo-Chavez, A., Cheilletz, A., Gasquet, D., Jones, D. Paleocene adakite Au-Fe bearing rocks, Mezcala, Mexico: evidence from geochemical characteristics. J. Geochem. Explor. 80, 25-40, 2003.
    Hart, S. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature. 309, 753-757, 1984.
    Hart, S.R., Hauri, E.H., Oschmann, L.A., Whitehead, J.A. Mantle Plumes and Entrainment: Isotopic Evidence. Science. 256 (5056), 517-520, 1992.
    Hickey-Vargas, R. Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine Sea plate. Earth Planet. Sci. Lett. 107, 290-304, 1991.
    Hickey-Vargas, R. Origin of the Indian Ocean-type isotopic signature in basalts from the West Philippine Sea plate spreading centers: an assessment of local vs large scale processes. J. Geophys. Res. 103, 20963-20979, 1998.
    Hickey-Vargas, R., Savov, I.P., Bizimis, M., Ishii, T., Fujioka, K. Origin of diverse geochemical signatures in igneous rocks from the West Philippine Basin: implications for tectonic models. In: Christie, D.M., Fisher, C.R., Lee, S.-M., Givens, S. (Eds.), Back-Arc Spreading Systems: Geological, Biological, Chemical and Physical Interactions. AGU Geophys. Monogr., 166. AGU, Washington, DC, 287-303, 2006.
    Hilde, T.W.C., Lee, C.-S. Origin and evolution of the West Philippine Basin: a new interpretation. Tectonophysics. 102, 85-104, 1984.
    Ho, C.-S. Mélanges in the Neogene sequence of Taiwan. Mere. Geol. Soc. China. 2, 85-96, 1977.
    Ho, K.-S., Chen, J.-C., Juang, W.-S. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China. J. Asian. Earth. Sci. 18, 307-324, 2000.
    Hollocher, K., Robinson, P., Walsh, E., Roberts, D. Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings. Am. J. Sci. 312, 357-416, 2012.
    Honza, E., Fujioka, K. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous. Tectonophysics. 384, 23-53, 2004.
    Hsu, T.-L. Geology of the Coastal Range, eastern Taiwan. Taiwan Geol. Survey. Bull. 8, 37-43, 1956.
    Hsu, T.-L. The Lichi Mélange in the Coastal Range Framework. Taiwan Geol. Survey. Bull. 25, 87-95, 1976.
    Huang, J. P- and S-wave tomography of the Hainan and surrounding regions: insight into the Hainan plume. Tectonophysics. 633, 176-192, 2014.
    Huang, T.-C., Chen, M.-P., Chi, W.-R. Calcareous nannofossils from the red shale of the ophiolite-mélange complex, eastern Taiwan. Mere. Geol. Soc. China. 3, 131-138, 1979.
    Huang, X.-W., Su, B.-X., Zhou, M.-F., Gao, J.-F., Qi, L. Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity. Lithos. 282, 215-227, 2017.
    Humphris, S.E., Thompson, G. Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim. Cosmochim. Acta. 42, 127–136, 1978.
    Hung, T.-D., Yang, T., Le, B.-M., Yu, Y., Xue, M., Liu, B., Liu, C., Wang, J., Pan, M., Huong, P.-T., Liu, F., Morgan, J.P. Crustal structure across the extinct mid-ocean ridge in South China sea from OBS receiver functions: Insights into the spreading rate and magma supply prior to the ridge cessation. Geophys. Res. Lett. 48(3), e2020GL089755, 2021.
    Irvine, T.N., Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth. Sci. 8(5), 523-548, 1971.
    Jahn, B.-M. Mid-ocean ridge or marginal basin origin of the East Taiwan Ophiolite: chemical and isotopic evidence. Contrib. Mineral. Petrol. 92, 194-206, 1986.
    Jahn, B.-M., Glikson, A.Y., Peucat, J.J., Hickman, A.H. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution. Geochim. Cosmochim. Acta. 45, 1633-1652, 1981.
    Jego, S., Maury, R.C., Polve, M., Yumul, G.P., Bellon, H., Tamayo, R.A., Cotton J. Geochemistry of adakites from the Philippines: Constraints on their origins Resour. Geol. 55, 163-187, 2005.
    Jochum, K.P., Verma, S.P. Extreme enrichment of Sb, Tl and other trace elements in altered MORB. Chem. Geol. 130(3-4), 289-299, 1996.
    Juang, W.-S., Chen, J.-C. Geochronology and geochemistry of Penghu basalts, Taiwan Strait and their tectonic significance. J. SE. Asian. Earth. Sci. 7, 185-193, 1992.
    Kamenov, G.D., Perfit, M.R., Mueller, P.A., Jonasson, I.R. Controls on magmatism in an island arc environment: study of lavas and sub-arc xenoliths from the Tabar–Lihir–Tanga–Feni island chain, Papua New Guinea. Contrib. Mineral. Petrol. 155, 635-656, 2008.
    Kawabata, H., Hanyu, T., Chang, Q., Kimura, J., Nichols, A.R.L., Tatsumi, Y. The Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust-recycling Model for HIMU OIB. J. Petrol. 52 (4), 791-838, 2011.
    Knight, A.W., Eitheim, E.S., Nelson, A.W., Nelson, S., Schultz, M.K. A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials. J. Environ. Radioactiv. 134, 66-74, 2014.
    Koepke, J., Feig, S. T., Snow, J., Freise, M. Petrogenesis of oceanic plagiogranites by partial melting of gabbros: An experimental study. Contrib. Mineral. Petrol. 146(4), 414-432, 2004.
    Koepke, J., Berndt, J., Feig, S.T., Holtz, F. The formation of SiO2- rich melts within the deep oceanic crystal by hydrous partial melting of gabbros. Contrib. Mineral. Petrol. 153, 67-84, 2007.
    Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27(3), 745-750, 1986.
    Li, C.-F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y., Zhao, X., Liu, Q., Kulhanek, D.K., Wang, J., Song, T., Zhao, F., Qiu, N., Guan, Y., Zhou, Z., Williams, T., Bao, R., Briais, A., Brown, E.A., Chen, Y., Clift, P.D., Colwell, F.S., Dadd, K.A., Ding, W., Almeida, I.H., Huang, X.-L., Hyun, S., Jiang, T., Koppers, A.A.P., Li, Q., Liu, C., Liu, Z., Nagai, R.H., Paleo-Alampay, A., Su, X., Tejada, M.L.G., Trinh, H.S., Yeh, Y.-C., Zhang, C., Zhang, F., Zhang, G.L. Ages and magnetic struc-tures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem. Geophys. Geosyst. 15, 4958-4983, 2014.
    Li, N., Yan, Q., Chen, Z., Shi, X. Geochemistry and petrogenesis of Quaternary volcanism from the islets in the eastern Beibu Gulf: evidence for Hainan plume. Acta Oceanol. Sin. 32 (12), 40-49, 2013.
    Lin, C.-T., Harris, R., Sun, W.-D., Zhang, G.-L. Geochemical and Geochronological Constraints on the Origin and Emplacement of the East Taiwan Ophiolite. Geochem. Geophys. Geosyst. 20, 2110-2133, 2019.
    Liu, Y.-H., Yang, H.-J., Takazawa, E., Satish-Kumar, M., You, C.-F. Decoupling of the Lu–Hf, Sm–Nd, and Rb–Sr isotope systems in eclogites and a garnetite from the Sulu ultra-high pressure metamorphic terrane: causes and implications. Lithos. 234, 1-14, 2015.
    Liou, J.-G. Mineralogy and chemistry of glassy basalts, Coastal Range Ophiolites, Taiwan. Geol. Soc. Am. Bull. 85 (1), 1-10, 1974.
    Liou, J.-G., Ernst, W.G. Oceanic Ridge Metamorphism of the East Taiwan Ophiolite. Contrib. Mineral. Petrol. 68, 335-348, 1979.
    Liou, J.-G., Lan, C.-Y., Suppe, J., Ernst, W.G. The East Taiwan Ophiolite: its occurrence, petrology, metamorphism and tectonic setting. Mining Research and Service Organization, Taipei, Spec. Rept. 1, 1-212, 1977.
    Luhr, J.F., Carmichael, I.S.E. The Colima volcanic complex, Mexico. I: post-caldera andesites from Volcan Colima. Contrib. Mineral. Petrol. 71, 343-372, 1980.
    Mahood, G., Hildreth, W. Large partition coefficients for trace elements in high-silica rhyolites. Geochim. Cosmochim. Acta. 47(1), 11-30, 1983.
    Makishima, A., Nakamura, E. Low-blank chemistry for Zn stable isotope ratio determination using extraction chromatographic resin and double spike-multiple collector-ICP-MS J. Anal. At. Spectrom. 28 (1), 127-133, 2013.
    Marsh, S.F., Alarid, J.E., Hammond, C.F., McLeod, M.J., Roensch, F.R., Rein, J.E. Anion exchange of 58 elements in hydrobromic acid and in hydriodic acid. LA-7084. United States, 1978.
    Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos. 79, 1-24, 2005.
    Miyashiro, A. Volcanic rock series in island arcs and active continental margins. Am. J. Sci. 274, 321-355, 1974.
    Morris, P.A. Slab melting as an explanation of Quaternary volcanism and aseismicity in Southwest Japan. Geology. 23, 395-398, 1995.
    Münker, C., Weyer, S., Scherer, E., Meager, K. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophys. Geosyst. 2, 2001.
    Nagasawa, H., Schnetzler, C.C. Partitioning of rare earth, alkali and alkaline earth elements between phenocrysts and acidic igneous magma. Geochim. Cosmochim. Acta. 35 (9), 953-968, 1971.
    Nash, W.P., Crecraft, H.R. Partition coefficients for trace elements in silicic magmas. Geochim. Cosmochim. Acta. 49(11), 2309-2322, 1985.
    Page, B.M., Suppe, J. The Pliocene Lichi melange of Taiwan: its plate tectonic and olistostromal origin. Am. J. Sci. 281, 193-227, 1981.
    Paster, T.P., Schauwecker, D.S., Haskin, L.A. The behavior of some trace elements during solidification of the Skaergaard layered series. Geochim. Cosmochim. Acta. 38(10), 1549-1577, 1974.
    Payot, B.D., Jego, S., Maury, R.C., Polve, M., Gregoire, M., Ceuleneer, G., Tamayo, R.A., Yumul, Jr., Bellon, H., Cotten, J. The oceanic substratum of northern Luzon: evidence from xenoliths within Monglo adakite (the Philippines). Isl. Arc. 16, 276-29, 2007.
    Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos. 100 (1‐4), 14-48, 2008.
    Pearce, J.A., Kempton, P.D., Nowell, G.M., Noble, S. R. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems. J. Petrol. 40, 1579-1611, 1999.
    Peate, D.W., Hawkesworth, C.J., von Calsteren, P.W., Taylor, R.N., Murton, B.J. 238U-230Th constraints on mantle upwelling and plume-ridge interaction along the Reykjanes Ridge. Earth Planet. Sci. Lett. 187, 259-272, 2001.
    Pin, C., Gannoun, A. Integrated Extraction Chromatographic Separation of the Lithophile Elements Involved in Long-Lived Radiogenic Isotope Systems (Rb-Sr, U-Th-Pb, Sm-Nd, La-Ce, and Lu-Hf) Useful in Geochemical and Environmental Sciences. Anal. Chem. 89, 2411-2417, 2017.
    Rudnick, R.L., Gao, S. Composition of the continental crust. Treatise. Geochem. Elsevier Pergamon, Oxford, UK. 3, 1-64, 2003.
    Salters, V.J.M., White, W.M. Hf isotope constraints on mantle evolution. Chem. Geol. 145, 447-460, 1998.
    Samaniego, P., Martin, H., Monzier, M., Robin, C., Fornari, M., Eissen, J.-P., Cotten, J. Temporal evolution of magmatism in the Northern Volcanic Zone of the Andes: The geology and petrology of Cayambe Volcanic Complex (Ecuador). J. Petrol. 46 (11), 2225-2252, 2005.
    Saunders, A.D., Tarney, J., Stern, C.R., Dalziel, I.W.D. Geochemistry of Mesozoic marginal basin floor igneous rocks from southern Chile. Part I. Geol. Soc. Am. Bull. 90, 237-258, 1979.
    Savov, I.P., Hickey-Vargas, R., D'Antonio, M., Ryan, J.G., Spadea, P. Petrology and geochemistry of West Philippine Basin basalts and early Palau-Kyushu arc volcaniclasts from ODP Leg 195, Site 1201: implications for the early history of the Izu-Bonin-Mariana Arc. J. Petrol. 47, 277-299, 2006.
    Schiano, P., Clochiatti, R., Shimizu, N., Maury, R., Jochum, K.P., Hofmann, A.W. Hydrous, silica-rich melts in the sub-arc mantle and their relationships with erupted arc lavas. Nature. 377, 595-600, 1995.
    Schmitz, M.D., Vervoort, J.D., Bowring, S.A., Patchett, P.J. Decoupling of the Lu–Hf and Sm–Nd isotope systems during the evolution of granulitic lower crust beneath southern Africa. Geology. 32 (5), 405-408, 2004.
    Seyfried, W.E., Mottl, M. Hydrothermal alteration of basalt by seawater under seawater-dominated conditions. Geochim. Cosmochim. Acta. 46, 985-1002, 1982.
    Seyfried, W.E., Mottl, M., Bischoff, J.L. Seawater/basalt effects on the chemistry and mineralogy of spilites from the ocean floor. Nature. 275, 211-213, 1978.
    Sisson, T.W., 1994. Hornblende-melt trace element partitioning measured by ion microprobe. Chem. Geol. 117, 331-344.
    Smith, D.R., Leeman, W.P. Petrogenesis of the Mt. St. Helens dacitic magmas. J. Geophys. Res. 92 (B10), 10313-10334, 1987.
    Staudigel, H., Hart, R. Alteration of basaltic glass: Mechanism and signifi cance for the oceanic crust-seawater budget. Geochim. Cosmochim. Acta. 47, 337-350, 1983.
    Stern, C.R., Kilian, R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral Volcanic Zone. Contrib. Mineral. Petrol. 123, 263-281, 1996.
    Stroncik, N.A., Schmincke, H.U. Palagonite – a review. Int. J. Earth. Sci. 91(4), 680-697, 2002.
    Sun, P., Niu, Y., Guo, P., Chen, S., Duan, M., Gong, H., Wang, X., Xiao, Y. Multiple mantle metasomatism beneath the Leizhou Peninsula, South China: Evidence from elemental and Sr-Nd-Pb-Hf isotope geochemistry of the late Cenozoic volcanic rocks. Int. Geol. Rev. 61(14), 1768-1785, 2019.
    Sun, S.S., McDonough, W. F. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processed. Magmatism in Ocean Basins, A.D. Saunders and M.J. Norry, eds. Geol. Soc. London. Spec. Pub. l42 (1), 313-345, 1989.
    Suppe, J., Liou J.-G., Ernst, W.G. Paleogeographic origins of the Miocene East Taiwan Ophiolite. Am. J. Sci. 281, 228-246, 1981.
    Teng, L.S. Geotectonic evolution of late Cenozoic arc continent collision in Taiwan. Tectonophysics. 183, 57-76, 1990.
    Tian, Z.‐X., Yan, Y., Huang, C.‐Y., Zhang, X.‐C., Liu, H.‐Q., Yu, M.‐M., Yao, D., Delik, Y. Geochemistry and geochronology of the accreted mafic rocks from the Hengchun Peninsula, southern Taiwan: Origin and tectonic implications. J. Geophys. Res. Solid Earth. 124, 2469-2491, 2019.
    Tu, K., Flower, M.F.J., Carlson, R.W., Xie, G.-H., Chen, C.-Y., Zhang, M. Magmatism in the South China Basin 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component. Chem. Geol. 97, 47-63, 1992.
    Tu, K., Flower, M.F., Carlson, R.W., Zhang, M., Xie, G. Sr, Nd, and Pb isotopic compositions of Hainan basalts (South China): Implications for a subcontinental lithosphere Dupal source. Geology. 19, 567-569, 1991.
    Wang, K.-L., Lo, Y.-M., Chung, S.-L., Lo, C.-H., Hsu, S.-K., Yang, H.-J., Shinjo, R. Age and Geochemical Features of Dredged Basalts from Offshore SW Taiwan: The Coincidence of Intra-Plate Magmatism with the Spreading South China Sea. Terr. Atmos. Ocean. Sci. 23 (6), 657-669, 2012.
    Wang, K.-L., Chung, S.-L., Lo, Y.-M., Lo, C.-H., Yang, H.-J., Shinjo, R., Lee, T.-Y., Wu, J.-C., Huang, S.-T. Age and geochemical characteristics of Paleogene basalts drilled from western Taiwan: Records of initial rifting at the southeastern Eurasian continental margin. Lithos. 155, 426-441, 2012.
    Wang, X.-C., Li, Z.-X., Li, X.-H., Li, J., Liu, Y., Long, W.-G., Zhou, J.-B., Wang, F. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: a Consequence of a Young Thermal Mantle Plume close to Subduction Zones? J. Petrol. 53, 177-233, 2012.
    Waters, C.L., Sims, K.W.W., Perfit, M.R., Blichert-Toft, J., Blusztajn, J. Perspective on the Genesis of E-MORB from Chemical and Isotopic Heterogeneity at 9-10°N East Pacific Rise. J. Petrol. 52 (3), 565-602, 2011.
    Wei, S.-S., Chen, Y.-J. Seismic evidence of the Hainan mantle plume by receiver function analysis in southern China. Geophys. Res. Lett. 43 (17), 8978-8985, 2016.
    Weis, D., Kieffer, B., Hanano, D., Silva, I.N., Barling, J., Pretorius, W., Maerschalk, C., Mattielli, N. Hf isotopic compositions of U.S. Geological Surveyreference materials. Geochem. Geophys. Geosyst. 8, Q06006, 2007.
    Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G.A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J.S., Goolaerts, A., Friedman, R.M., Mahoney, J.B. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 7, Q08006, 2006.
    Willbold, M., Stracke, A. Formation of enriched mantle components by recycling of upper and lower continental crust. Chem. Geol. 276 (3), 188-197, 2010.
    Wilson, M. Igneous petrogenesis: A Global Tectonic Approach. Unwin Hyman, London. 1-466, 1989.
    Workman, R.K., Hart, S.R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53-72, 2005.
    Workman, R.K., Hart, S.R., Jackson, M., Regelous, M., Farley, K.A., Blusztajn, J., Kurz, M., Staudigel, H. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: evidence from the Samoan Volcanic Chain. Geochem. Geophys. Geosyst. 5, 1-44, 2004.
    Wu, J., Suppe, J., Lu, R., Kanda, R. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods, J. Geophys. Res. Solid Earth. 121, 4670-4741, 2016.
    Yan, Q.-S., Castillo, P., Shi, X.-F., Wang, L.-L., Liao, L., Ren, J.-B. Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications. Lithos. 218, 117-126, 2015.
    Yan, Q.-S., Shi, X.-F., Metcalfe, I., Liu, S.-F., Xu, T.-Y., Korkanitnan, N., Sirichaiseth, T., Yuan, L., Zhang, Y., Zhang, H. Hainan Mantle Plume Produced Late Cenozoic Basaltic Rocks in Thailand, Southeast Asia. Sci. Rep. 8 (1), 207127, 2018.
    Yang, H.-J., Frey, F.A., Garcia, M.O., Clague, D.A. Submarine lavas from Mauna Kea volcano, Hawaii: implications for Hawaiian shield stage processes. J. Geophys. Res. 99, 15577-15594, 1994.
    Yokoyama, T., Makishima, A., Nakamura, E. Separation of Thorium and Uranium from Silicate Rock Samples Using Two Commercial Extraction Chromatographic Resins. Anal. Chem. 71, 135-141, 1999.
    Yu, M., Yumul Jr, G.P., Delik, Y., Yan, Y., Huang, C.-Y. Diking of various slab melts beneath forearc spreading center and age constraints of the subducted slab. Earth Planet. Sci. Lett. 579, 117367, 2022.
    Yu, X., Liu, Z. Non-mantle-plume process caused the initial spreading of the South China Sea. Sci. Rep. 10, 8500, 2020.
    Yui, T.-F., Yang, M.-H. Trace element implication of the paleotectonic environment of pillow basalts from the East Taiwan Ophiolite. Proceeding of the Geological Society of China. 31(1), 11-23, 1988.
    Zhang, G.-L., Luo, Q., Zhao, J., Jackson, M.G., Guo, L.-S., Zhong, L.-F. Geochemical nature of sub‐ridge mantle and opening dynamics of the South China Sea. Earth Planet. Sci. Lett. 489, 145-155, 2018.
    Zhang, H., Gao, S., Zhong, Z., Zhang, B., Zhang, L., Hu, S. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chem. Geol. 186 (3), 281-299, 2002.
    Zhao, M.-H., Sibuet, J.-C., Wu, J. Intermingled fates of the South China Sea and Philippine Sea Plate. Natl. Sci. Rev. 6 (05), 886-890, 2019.
    Zheng, H., Zhong, L.-F., Kapsiotis, A., Cai, G.-Q., Wan, Z.-F., Xia, B. Post-spreading Basalts from the Nanyue Seamount: Implications for the Involvement of Crustal- and Plume-Type Components in the Genesis of the South China Sea Mantle. Minerals. 9, 378, 2019.
    Zhong, L.-F., Cai, G.-Q., Koppers, A.A., Xu, Y.-G., Xu, H.-H., Gao, H.-F., Xia, B. 40Ar/39Ar dating of oceanic plagiogranite: Constraints on the initiation of seafloor spreading in the South China Sea. Lithos. 302, 421-426, 2018.
    Zindler, A., Hart, S. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493-571, 1986.
    Zou, H., Fan, Q. U–Th isotopes in Hainan basalts: implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island. Lithos. 116 (1), 145-152, 2010.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE