簡易檢索 / 詳目顯示

研究生: 王冠傑
Wang, Guan-jie
論文名稱: 滿足多項式等式的質環
Prime Ring with Polynomial Identity
指導教授: 柯文峰
Ke, Wen-Fong
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 32
中文關鍵詞: Capelli多項式多線性多項式Amistur定理Ponser定理
外文關鍵詞: Ponser theorem, Amistur theorem, multilinear polynomial, Capelli polynomial
相關次數: 點閱:62下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文,我們先討論多項式等式,它是一個固定的多項式,使得所有的代數R的元素代入皆化為單位元素。接下來,只要質環滿足多項式等式,我們將介紹幾個有用的定理,用來討論質環的結構。

    In this thesis, we talk about polynomial identity first, where all element
    substitute into the fixed polynomial can vanish in the algebra R. As
    following process, we introduce several useful theorems to discuss the
    structure of prime ring, which mention that these rings have polynomial
    identities.

    1. Introduction 1 2. Polynomial Identity 1 3. Identity of Matrix 5 4. Primitive PI algebra 14 5. The Structure of Semiprime Ring 16 6. The Structure of Prime Ring 24 References 32

    [1] Claudio Procesi, Ring with polynomial identities, Marcel Dekker, New York, 1973, pp.1-50.
    [2] David S. Dummit and Richard M. Foote, Abstract Algebra, JohnWiley & Sons, Hoboken, 2004, pp.657-680.
    [3] I.N.Herstein, Noncommutative Rings, Cambridge University Press, Washington, 1994, pp.39-51,90,150-158.
    [4] Kenji Ueno, Algebraic Geometry 1, AMS Bookstore, Providence, 1999, pp.1-14.
    [5] Louis Halle Rowen, Polynomial Identity in Ring Theory, Academic Press, New York-London, 1980, pp.1-40
    [6] P.M.Cohn, Algebra: 3-vol Set, Springer, Chichester, 1991, pp.349-352
    [7] P.M.Cohn, Skew fields: Theory of General Division Rings, Cambridge University Press, Cambridge, 1995, pp.14-18
    [8] T.Y.Lam, A First Course in Noncommutative Rings, Springer, New York, 2001, pp.164-180.

    下載圖示 校內:立即公開
    校外:2009-07-17公開
    QR CODE