簡易檢索 / 詳目顯示

研究生: 郭承恩
Kuo, Cheng-En
論文名稱: 帶缺口與不帶缺口試體確定超高性能纖維混凝土之拉伸性質
Notched versus Unnotched Specimens for Determining the Tensile Properties of Ultra-High Performance Fiber Reinforced Concrete
指導教授: 阿力
Sturm, Alexander
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 124
中文關鍵詞: 缺口拉伸性質超高性能纖維混凝土
外文關鍵詞: notch, tensile properties, ultra-high performance fiber reinforced concrete (UHPFRC)
相關次數: 點閱:35下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 缺口的存在會導致試體內的應力集中。為了進一步研究缺口對超高性能纖維混凝土試體拉伸性質的影響,本研究製作了30個斷面尺寸為150毫米 × 150毫米、長度為600毫米的短梁試體。其中15個試體在梁底部切割深度為15毫米、寬度為3毫米的缺口。同時,研究考慮了不同纖維類型和不同纖維體積的影響,以進行抗彎試驗。此外,還製作了18個斷面尺寸為80毫米 × 80毫米、長度為460毫米的狗骨頭試體。其中9個試體在中心部位的兩側切割深度為5毫米、寬度為3毫米的缺口,並考慮了不同纖維體積下的直接拉伸試驗。實驗結果表明,缺口的存在確實提高了試體的強度。然而,隨著纖維體積的增加,缺口的增強或改善效果減弱,甚至可能降低試體的強度。基於此,還提出了關於如何使用直接拉伸試驗和彎曲試驗結果來預測超高性能纖維混凝土拉伸性質的建議。

    The presence of notches leads to stress concentrations in specimens. To further investigate the effect of notches on the tensile properties of ultra-high performance fiber reinforced concrete (UHPFRC) prism, this study fabricated 30 beam specimens with a cross-section of 150mm × 150mm and a length of 600mm. Among these, 15 specimens had notches with a depth of 15mm and a width of 3mm cut at the bottom of the beams. Meanwhile, the effect of fiber type and fiber volume fraction was also considered to explore flexural tests. Additionally, 18 dogbone specimens with a cross-section of 80mm × 80mm and a length of 460mm were produced. Among these, 9 specimens had notches with a depth of 5mm and a width of 3mm cut on both sides of the central section, and were subjected to direct tension tests with different fiber volume fraction. The experimental results show that the presence of notches indeed increases the characteristic strength of the specimens. However, as the fiber volume increases, the enhancement or improvement of the notches alleviates, and may even decrease the strength of the specimens. From this recommendations were also made about how the results of direct tension and flexural tests should be used to predict the tensile performance of UHPFRC.

    摘要 i ABSTRACT ii ACKNOWLEDGMENT iii TABLE OF CONTENTS iv LIST OF TABLES vii LIST Of FIGURES ix CHAPTER 1 INTRODUCTION 1 1.1 Motivation and objective 1 CHAPTER 2 LITERATURE REVIEW 3 2.1 Ultra-High Performance Concrete 3 2.1.1 Ultra-High Performance Concrete 3 2.1.2 Steel fiber 6 2.2 Flexural prism test 12 2.3 Direct tension test 18 2.4 Analysis method 20 2.4.1 EN 14651:2005 20 2.4.2 NF P-18 470 24 2.4.3 AS3600:2018 28 2.4.4 ASTM C1609 31 2.5 Summary 33 CHAPTER 3 EXPERIMENT PROJECT 34 3.1 Specimen design 34 3.1.1 Shape of prism specimen 34 3.1.2 Shape of dogbone specimen 37 3.1.3 Designation 39 3.2 Material and mixture proportion 41 3.2.1 Materials 41 3.2.2 Mixture proportion 46 3.3 Specimen fabrication 47 3.3.1 Preliminary preparation 47 3.3.2 Casting 49 3.3.3 Demolding and curing 52 3.4 Specimen setup 55 3.4.1 Prism specimen 55 3.4.2 Dogbone specimen 59 3.4.3 Apparatus 61 3.4.4 Instrumentation 62 3.5 Test procedure 63 CHAPTER 4 RESULTS 64 4.1 Cylinder compression test 64 4.2 Unnotched flexural prism test 66 4.2.1 S13-1-U 67 4.2.2 S13-2-U 68 4.2.3 S13-3-U 69 4.2.4 H35-1-U 70 4.2.5 H35-2-U 71 4.3 Notched flexural prism test 73 4.3.1 S13-1-N 73 4.3.2 S13-2-N 74 4.3.3 S13-3-N 75 4.3.4 H35-1-N 76 4.3.5 H35-2-N 77 4.4 Unnotched direct tensile test 80 4.4.1 S13-1-M 80 4.4.2 S13-2-M 81 4.4.3 S13-3-M 82 4.5 Notched direct tensile test 84 4.5.1 S13-1-NM 84 4.5.2 S13-2-NM 85 4.5.3 S13-3-NM 86 CHAPTER 5 DISCUSSION 88 5.1 Flexural prism test 88 5.1.1 Comparison of the effect of notch 88 5.1.2 Comparison of the effect of fiber volume 89 5.1.3 Comparison of the effect of fiber type 90 5.2 Direct tension test 91 5.2.1 Comparison of the effect of notch 91 5.2.2 Comparison of the effect of fiber volume 93 5.2.3 Stress-strain relationship 94 5.2.4 Stress-crack width relationship 96 5.3 Analysis approaches 97 5.3.1 Comparison of the different analysis approaches 97 5.3.2 Additional factor for AS3600:2018 approach for UHPC 99 CHAPTER 6 CONCLUSION 101 CHAPTER 7 REFERENCES 102 CHAPTER 8 APPENDIX 104 8.1 Cylinder compression strength 104 8.2 Unnotched flexural prism test 108

    [1] ASTM, C. (2012). 1609/c 1609m standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading). Replaces ASTM C, 1018(2009).
    [2] Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite structures, 86(1-3), 3-9.
    [3] Buitelaar, P. (2004). Heavy reinforced ultra high performance concrete. Proceedings of the Int. Symp. on UHPC, Kassel, Germany,
    [4] Chowdhury, S., & Loo, Y. (2021). Complexities and effectiveness of australian standard for concrete structures—as 3600-2018. EASEC16: Proceedings of The 16th East Asian-Pacific Conference on Structural Engineering and Construction, 2019,
    [5] En, B. (2005). 14651, 2005. Test method for metallic fibred concrete—Measuring the flexural tensile strength (limit of proportionality (LOP), residual). Br. Stand. Inst, 3, 1-17.
    [6] Finazzi, S., Paegle, I., Fischer, G., & Minelli, F. (2014). Influence of bending test configuration on cracking behavior of FRC. Proceedings of the 3rd All-Russia (International) Conference on Concrete and Reinforced Concrete,
    [7] Graybeal, B., Brühwiler, E., Kim, B.-S., Toutlemonde, F., Voo, Y. L., & Zaghi, A. (2020). International perspective on UHPC in bridge engineering. Journal of Bridge Engineering, 25(11), 04020094.
    [8] Graybeal, B., & Tanesi, J. (2007). Durability of an ultrahigh-performance concrete. Journal of materials in civil engineering, 19(10), 848-854.
    [9] Graybeal, B. A., & Baby, F. (2013). Development of direct tension test method for ultra-high-performance fiber-reinforced concrete. ACI Materials Journal, 110(2), 177.
    [10] Le, A. H. (2022). An Experimental Evaluation of Direct Tensile Strength for Ultra-high Performance Concrete. Fibre Reinforced Concrete: Improvements and Innovations II: X RILEM-fib International Symposium on Fibre Reinforced Concrete (BEFIB) 2021 10,
    [11] Le Hoang, A., & Fehling, E. (2017). Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete. Construction and Building materials, 153, 790-806.
    [12] Qu, R., Zhang, P., & Zhang, Z. (2014). Notch effect of materials: strengthening or weakening? Journal of Materials Science & Technology, 30(6), 599-608.
    [13] Schmidt, M., & Fröhlich, S. (2015). UHPC From Research to Standardization: European Approaches. Advances in Civil Engineering Materials, 4(2), 144-170.
    [14] Sobuz, H., Visintin, P., Ali, M. M., Singh, M., Griffith, M., & Sheikh, A. (2016). Manufacturing ultra-high performance concrete utilising conventional materials and production methods. Construction and Building materials, 111, 251-261.
    [15] stander, F. (2016). NF P18-470-concrete-ultra-high performance fibre-reinforced concrrte-specifications, performance, production and conformity. La Plaine Saint-Denis: Association Française de Normalisation, 94.
    [16] Vandewalle, L. (2000). Test and design methods for steel fibre reinforced concrete. Recommendations: Bending test. Materials and structures, 33(225), 3-5.
    [17] Wille, K., & Parra-Montesinos, G. J. (2012). Effect of Beam Size, Casting Method, and Support Conditions on Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete. ACI Materials Journal, 109(3).
    [18] Wu, Z., Shi, C., He, W., & Wu, L. (2016). Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and Building materials, 103, 8-14.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE