| 研究生: |
蔡東儒 Tsai, Tung-Ju |
|---|---|
| 論文名稱: |
實驗上實現半裝置無關單向量子計算 Experimental Realization of Semi-Device-Independent One-Way Quantum Computation |
| 指導教授: |
李哲明
Li, Che-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 單向量子計算 、半裝置無關單向量子計算 、多光子量子操控性 、量子隱形傳態 、古典過程 、量化量子過程 |
| 外文關鍵詞: | One-way quantum computation, Semi-device-independent one-way quantum computation, Multi-photon quantum EPR steering, Quantum teleportation, Classical process, Quantifying quantum processes |
| 相關次數: | 點閱:49 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量子計算利用量子力學中特有的性質,提供了優於古典計算理論之嶄新資訊處理方法。單向量子計算 (one-way computation)為其中一種重要計算模型,量子計算任務可透過準備好特定的圖態 (graph state)及對每個量子位元特定量測即可達成。然而實現單向量子計算的過程中,可能因環境干擾或實驗上不可預期之因素使計算過程能被古典實在論所描述。本研究透過嶄新之觀點:基於古典節點之古典計算過程的方法,識別實驗單向量子計算的信賴性。此外由於光子容易傳送的特性,使其適用於單向量子計算以完成量子網路及分散式量子計算的,因此本研究為首次在光子實驗中應用此理論來排除古典模仿的存在;首先,我們透過干涉高於92%保真度之二對糾纏光子實現每秒約75對以Greenberger-Horne-Zeilinger態 (GHZ state)為目標態之糾纏四光子,並使用我們提出的量子關聯標準,識別出其具有純四光子量子操控性 (genuine multipartite quantum steering)。透過此四光子狀態並進而轉換成單向量子計算所需的星狀圖態,用於執行通用單量子位元、雙量子位元量子邏輯閘,並透過量子過程斷層掃描 (quantum process tomography)完整特徵化實驗上實現之量子運算。我們更進一步驗證了實驗邏輯閘可以超越基於古典節點之古典過程,因此實驗上實現了半裝置無關單向量子計算。本研究也開展了多項重要之研究課題,例如完成真正的單向量子計算所需之物理資源;以及其他諸如在量子隱形傳態之量子網路應用中。
Quantum computation uses the peculiar properties of quantum mechanics to provide a new information processing method far exceeding the classical computation theory. One-way computation is one of the important computational models. Quantum computing tasks can be accomplished by preparing specific graph states and performing specific measurements on each qubit. However, in the process of realizing the one-way quantum computation, the process of one-way computation can be described by classical realism due to environmental interference or unpredictable factors in the experiment. This research identifies the reliability of experimental one-way quantum computation through a new viewpoint: the classical computation process based on classical nodes and applies this method to this experiment for the first time. In addition, due to the characteristics of easy transmission of photons, it is suitable for one-way quantum computation and applied to quantum networks and distributed quantum computation. Therefore, this study is the first to use this method in the photonic experiment to exclude the existence of classical mimicry. In this experiment, first, we use interference with two pairs of entangled photons with fidelities higher than 92%. To achieve about 75 pairs per second of entangled four-photon states with Greenberger-Horne-Zeilinger state (GHZ state) as the target state and use our proposed quantum correlation criterion to identify it with genuine four-photon quantum steering. Through this four-photon state and then converted into a star graph state required for the one-way quantum computation, it is used to implement universal single-qubit and two-qubit quantum logic gates, and fully characterize experimentally implemented quantum operations through quantum process tomography. We further verified that the experimental logic gates can surpass the classical process based on classical nodes, so we experimentally realize the semi-device independent one-way quantum computation. This study also carried out a number of important research topics, such as the physical resources required to perform genuine one-way quantum computation; and other quantum network applications such as quantum teleportation.
[1] D. Gottesman, Stabilizer codes and quantum error correction. California Institute of Technology, 1997.
[2] D. Schlingemann and R. F. Werner, “Quantum error-correcting codes associated with graphs,” Physical Review A, vol. 65, no. 1, p. 012308, 2001.
[3] D. Schlingemann, “Stabilizer codes can be realized as graph codes,” arXiv preprint quant-ph/0111080, 2001.
[4] P. Aliferis and D. W. Leung, “Simple proof of fault tolerance in the graph-state model,” Physical Review A, vol. 73, no. 3, p. 032308, 2006.
[5] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical review letters, vol. 86, no. 22, p. 5188, 2001.
[6] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nest, “Measurement-based quantum computation,” Nature Physics, vol. 5, no. 1, pp. 19– 26, 2009.
[7] V. Danos and E. Kashefi, “Determinism in the one-way model,” Physical Review A, vol. 74, no. 5, p. 052310, 2006.
[8] D. E. Browne, E. Kashefi, M. Mhalla, and S. Perdrix, “Generalized flow and determinism in measurement-based quantum computation,” New Journal of Physics, vol. 9, no. 8, p. 250, 2007.
[9] A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum computation,” in 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517– 526, IEEE, 2009.
[10] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” science, vol. 335, no. 6066, pp. 303– 308, 2012.
[11] T. Morimae and K. Fujii, “Blind quantum computation protocol in which alice only makes measurements,” Physical Review A, vol. 87, no. 5, p. 050301, 2013.
[12] C. Greganti, M.-C. Roehsner, S. Barz, T. Morimae, and P. Walther, “Demonstration of measurement-only blind quantum computing,” New Journal of Physics, vol. 18, no. 1, p. 013020, 2016.
[13] M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Physical Review A, vol. 59, no. 3, p. 1829, 1999.
[14] D. Markham and B. C. Sanders, “Erratum: Graph states for quantum secret sharing [phys. rev. a 78, 042309 (2008)],” Physical Review A, vol. 83, no. 1, p. 019901, 2011.
[15] B. Bell, D. Markham, D. Herrera-Martí, A. Marin, W. Wadsworth, J. Rarity, and M. Tame, “Experimental demonstration of graph-state quantum secret sharing,” Nature communications, vol. 5, no. 1, pp. 1–12, 2014.
[16] Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Physical review letters, vol. 95, no. 20, p. 200502, 2005.
[17] Z. Zhao, Y.-A. Chen, A.-N. Zhang, T. Yang, H. J. Briegel, and J.-W. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature, vol. 430, no. 6995, pp. 54–58, 2004.
[18] H. Rutbeck-Goldman, P. Haas, D. Hucul, Z. Smith, M. Macalik, J. Phillips, J. Williams, C. Woodford, B. Tabakov, and K.-A. Brickman-Soderberg, “Generating greenberger-horne-zeilinger states in remote trapped ions,” in APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, vol. 2020, pp. K01–084, 2020.
[19] D. J. Wineland, D. Leibfried, M. D. Barrett, A. Ben-Kish, J. C. Bergquist, R. Blakestad, J. J. Bollinger, J. Britton, J. Chiaverini, B. DeMarco, et al., “Quantum control, quantum information processing, and quantum-limited metrology with trapped ions,” in Laser Spectroscopy, pp. 393–402, World Scientific, 2005.
[20] Y.-L. Shi, F. Mei, Y.-F. Yu, X.-L. Feng, and Z.-M. Zhang, “Generation of a genuine four-particle entangled state of trap ions,” Quantum Information Processing, vol. 11, no. 1, pp. 229–234, 2012.
[21] S. Li, “Generation of a three-ion ghz-like state in ion-trap systems,” International Journal of Theoretical Physics, vol. 54, no. 1, pp. 10–13, 2015.
[22] H. Häffner, W. Hänsel, C. Roos, J. Benhelm, D. Chek-al Kar, M. Chwalla, T. Körber, U. Rapol, M. Riebe, P. Schmidt, et al., “Scalable multiparticle entanglement of trapped ions,” Nature, vol. 438, no. 7068, pp. 643–646, 2005.
[23] Y. Zhao, R. Zhang, W. Chen, X.-B. Wang, and J. Hu, “Creation of greenberger-horne-zeilinger states with thousands of atoms by entanglement amplification,” npj Quantum Information, vol. 7, no. 1, pp. 1–6, 2021.
[24] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature, vol. 425, no. 6961, pp. 937–940, 2003.
[25] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B.
Hume, W. M. Itano, J. D. Jost, C. Langer, et al., “Creation of a six-atom`schrödinger cat'state,” Nature, vol. 438, no. 7068, pp. 639–642, 2005.
[26] M. Gong, S. Wang, C. Zha, M.-C. Chen, H.-L. Huang, Y. Wu, Q. Zhu, Y. Zhao, S. Li, S. Guo, et al., “Quantum walks on a programmable two-dimensional 62-qubit superconducting processor,” Science, vol. 372, no. 6545, pp. 948–952, 2021.
[27] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D. Fan, et al., “Strong quantum computational advantage using a superconducting quantum processor,” Physical review letters, vol. 127, no. 18, p. 180501, 2021.
[28] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,” Applied Physics Reviews, vol. 6, no. 2, p. 021318, 2019.
[29] J. M. Chow, J. M. Gambetta, E. Magesan, D. W. Abraham, A. W. Cross, B. R. Johnson, N. A. Masluk, C. A. Ryan, J. A. Smolin, S. J. Srinivasan, et al., “Implementing a strand of a scalable fault-tolerant quantum computing fabric,” Nature communications, vol. 5, no. 1, pp. 1–9, 2014.
[30] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin, M. Brink, L. Capelluto, O. Günlük, T. Itoko, N. Kanazawa, et al., “Demonstration of quantum volume 64 on a superconducting quantum computing system,” Quantum Science and Technology, vol. 6, no. 2, p. 025020, 2021.
[31] C.-P. Yang, Q.-P. Su, S.-B. Zheng, and F. Nori, “Entangling superconducting qubits in a multi-cavity system,” New Journal of Physics, vol. 18, no. 1, p. 013025, 2016.
[32] J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Physical Review Letters, vol. 86, no. 20, p. 4435, 2001.
[33] Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, M. Żukowski, and J.-W. Pan, “Experimental violation of local realism by four-photon greenberger-horne-zeilinger entanglement,” Physical review letters, vol. 91, no. 18, p. 180401, 2003.
[34] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nature physics, vol. 3, no. 2, pp. 91–95, 2007.
[35] X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A.
Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nature photonics, vol. 6, no. 4, pp. 225–228, 2012.
[36] X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, et al., “Experimental ten-photon entanglement,” Physical review letters, vol. 117, no. 21, p. 210502, 2016.
[37] M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nature Photonics, vol. 10, no. 4, pp. 248–252, 2016.
[38] L.-K. Chen, Z.-D. Li, X.-C. Yao, M. Huang, W. Li, H. Lu, X. Yuan, Y.-B. Zhang, X. Jiang, C.-Z. Peng, et al., “Observation of ten-photon entanglement using thin bib 3 o 6 crystals,” Optica, vol. 4, no. 1, pp. 77–83, 2017.
[39] H.-S. Zhong, Y. Li, W. Li, L.-C. Peng, Z.-E. Su, Y. Hu, Y.-M. He, X. Ding, W. Zhang, H. Li, et al., “12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Physical review letters, vol. 121, no. 25, p. 250505, 2018.
[40] D. Wu, Q. Zhao, X.-M. Gu, H.-S. Zhong, Y. Zhou, L.-C. Peng, J. Qin, Y.-H. Luo, K. Chen, L. Li, et al., “Robust self-testing of multiparticle entanglement,” Physical Review Letters, vol. 127, no. 23, p. 230503, 2021.
[41] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, et al., “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science, vol. 351, no. 6278, pp. 1176–1180, 2016.
[42] G. Milburn, S. Schneider, and D. James, “Ion trap quantum computing with warm ions,” Fortschritte der Physik: Progress of Physics, vol. 48, no. 9-11, pp. 801–810, 2000.
[43] J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” The Journal of chemical physics, vol. 109, no. 5, pp. 1648–1653, 1998.
[44] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: A cavity qed model,” Physical Review Letters, vol. 75, no. 21, p. 3788, 1995.
[45] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, et al., “Superconducting quantum circuits at the surface code threshold for fault tolerance,” Nature, vol. 508, no. 7497, pp. 500–503, 2014.
[46] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Physical Review A, vol. 57, no. 1, p. 120, 1998.
[47] M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” 2002.
[48] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Physical review A, vol. 68, no. 2, p. 022312, 2003.
[49] H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Physical Review Letters, vol. 86, no. 5, p. 910, 2001.
[50] S. C. Benjamin, D. E. Browne, J. Fitzsimons, and J. J. Morton, “Brokered graph-state quantum computation,” New Journal of Physics, vol. 8, no. 8, p. 141, 2006.
[51] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008.
[52] M. Caleffi, A. S. Cacciapuoti, and G. Bianchi, “Quantum internet: From communication to distributed computing!,” in Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, pp. 1–4, 2018.
[53] A. Broadbent and E. Kashefi, “Parallelizing quantum circuits,” Theoretical computer science, vol. 410, no. 26, pp. 2489–2510, 2009.
[54] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Reviews of modern physics, vol. 79, no. 1, p. 135, 2007.
[55] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature, vol. 434, no. 7030, pp. 169–176, 2005.
[56] G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with two-photon four-qubit cluster states,” Physical review letters, vol. 100, no. 16, p. 160502, 2008.
[57] K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Physical review letters, vol. 99, no. 12, p. 120503, 2007.
[58] R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feedforward,” Nature, vol. 445, no. 7123, pp. 65–69, 2007.
[59] A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, “Experimental construction of optical multiqubit cluster states from bell states,” Physical Review A, vol. 73, no. 2, p. 022330, 2006.
[60] C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order einstein-podolsky-rosen steering,” Physical review letters, vol. 115, no. 1, p. 010402, 2015.
[61] A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, et al., “An integrated diamond nanophotonics platform for quantum-optical networks,” Science, vol. 354, no. 6314, pp. 847–850, 2016.
[62] J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nature Photonics, vol. 14, no. 5, pp. 273–284, 2020.
[63] J. I. Cirac, A. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Physical Review A, vol. 59, no. 6, p. 4249, 1999.
[64] A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Physical review letters, vol. 96, no. 1, p. 010503, 2006.
[65] R. Van Meter, T. D. Ladd, A. G. Fowler, and Y. Yamamoto, “Distributed quantum computation architecture using semiconductor nanophotonics,” International Journal of Quantum Information, vol. 8, no. 01n02, pp. 295–323, 2010.
[66] L. Jiang, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Distributed quantum computation based on small quantum registers,” Physical Review A, vol. 76, no. 6, p. 062323, 2007.
[67] Y. L. Lim, A. Beige, and L. C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Physical review letters, vol. 95, no. 3, p. 030505, 2005.
[68] J. F. Fitzsimons, “Private quantum computation: an introduction to blind quantum computing and related protocols,” npj Quantum Information, vol. 3, no. 1, pp. 1–11, 2017.
[69] T. Morimae, “Verification for measurement-only blind quantum computing,” Physical Review A, vol. 89, no. 6, p. 060302, 2014.
[70] J.-C. Xu, “Quantifying one-way quantum computation and its applications,” A Thesis Submitted fot the Degree of Master, 2020.
[71] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Physical review letters, vol. 70, no. 13, p. 1895, 1993.
[72] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.
[73] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S.
Polzik, “Unconditional quantum teleportation,” science, vol. 282, no. 5389, pp. 706– 709, 1998.
[74] M. A. Nielsen, E. Knill, and R. Laflamme, “Complete quantum teleportation using nuclear magnetic resonance,” Nature, vol. 396, no. 6706, pp. 52–55, 1998.
[75] M. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. Itano, J. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, et al., “Deterministic quantum teleportation of atomic qubits,” Nature, vol. 429, no. 6993, pp. 737–739, 2004.
[76] J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. S.
Polzik, “Quantum teleportation between light and matter,” Nature, vol. 443, no. 7111, pp. 557–560, 2006.
[77] X.-X. Xia, Q.-C. Sun, Q. Zhang, and J.-W. Pan, “Long distance quantum teleportation,” Quantum Science and Technology, vol. 3, no. 1, p. 014012, 2017.
[78] C.-K. Chen, S.-H. Chen, N.-N. Huang, and C.-M. Li, “Identifying genuine quantum teleportation,” Physical Review A, vol. 104, no. 5, p. 052429, 2021.
[79] Y.-H. Luo, H.-S. Zhong, M. Erhard, X.-L. Wang, L.-C. Peng, M. Krenn, X. Jiang, L. Li, N.-L. Liu, C.-Y. Lu, et al., “Quantum teleportation in high dimensions,” Physical review letters, vol. 123, no. 7, p. 070505, 2019.
[80] X.-M. Hu, C. Zhang, B.-H. Liu, Y. Cai, X.-J. Ye, Y. Guo, W.-B. Xing, C.-X. Huang, Y.-F. Huang, C.-F. Li, et al., “Experimental high-dimensional quantum teleportation,” Physical Review Letters, vol. 125, no. 23, p. 230501, 2020.
[81] M. Pawłowski and N. Brunner, “Semi-device-independent security of one-way quantum key distribution,” Physical Review A, vol. 84, no. 1, p. 010302, 2011.
[82] C. Erven, E. Meyer-Scott, K. Fisher, J. Lavoie, B. Higgins, Z. Yan, C. Pugh, J.-P. Bourgoin, R. Prevedel, L. Shalm, et al., “Experimental three-photon quantum nonlocality under strict locality conditions,” Nature photonics, vol. 8, no. 4, pp. 292–296, 2014.
[83] S. Massar and S. Popescu, “Optimal extraction of information from finite quantum ensembles,” Physical Review Letters, vol. 74, no. 8, p. 1259, 1995.
[84] D. Bruß and C. Macchiavello, “Optimal state estimation for d-dimensional quantum systems,” Physics Letters A, vol. 253, no. 5-6, pp. 249–251, 1999.
[85] A. Hayashi, T. Hashimoto, and M. Horibe, “Reexamination of optimal quantum state estimation of pure states,” Physical review A, vol. 72, no. 3, p. 032325, 2005.
[86] H. Lu, C.-Y. Huang, Z.-D. Li, X.-F. Yin, R. Zhang, T.-L. Liao, Y.-A. Chen, C.-M.
Li, and J.-W. Pan, “Counting classical nodes in quantum networks,” Physical review letters, vol. 124, no. 18, p. 180503, 2020.
[87] K. Wei-Ting, “Experimental verification of genuine four-photon quantum steering using entanglement witness observables,” Master’s thesis, 2022.
[88] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond bell's theorem,” in Bell's theorem, quantum theory and conceptions of the universe, pp. 69–72, Springer, 1989.
[89] K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Physical Review A, vol. 40, no. 5, p. 2847, 1989.
[90] U. Leonhardt, Measuring the quantum state of light, vol. 22. Cambridge university press, 1997.
[91] K. Jones, “Fundamental limits upon the measurement of state vectors,” Physical Review A, vol. 50, no. 5, p. 3682, 1994.
[92] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” Journal of Modern Optics, vol. 44, no. 11-12, pp. 2455–2467, 1997.
[93] J. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Physical Review Letters, vol. 78, no. 2, p. 390, 1997.
[94] R. A. Bertlmann and P. Krammer, “Bloch vectors for qudits,” Journal of Physics A: Mathematical and Theoretical, vol. 41, no. 23, p. 235303, 2008.
[95] R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro, “Qudit quantum-state tomography,” Physical Review A, vol. 66, no. 1, p. 012303, 2002.
[96] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Physical Review Letters, vol. 75, no. 24, p. 4337, 1995.
[97] C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “Generation of correlated photon pairs in type-ii parametric down conversion—revisited,” Journal of Modern Optics, vol. 48, no. 13, pp. 1997–2007, 2001.
[98] Y. Shih, “Entangled biphoton source-property and preparation,” Reports on Progress in Physics, vol. 66, no. 6, p. 1009, 2003.
[99] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Reviews of Modern Physics, vol. 84, no. 2, p. 777, 2012.
[100] Y. Shih and C. O. Alley, “New type of einstein-podolsky-rosen-bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Physical Review Letters, vol. 61, no. 26, p. 2921, 1988.
[101] C.-K. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Physical review letters, vol. 59, no. 18, p. 2044, 1987.
[102] O. Gühne, C.-Y. Lu, W.-B. Gao, and J.-W. Pan, “Toolbox for entanglement detection and fidelity estimation,” Physical Review A, vol. 76, no. 3, p. 030305, 2007.
[103] B. Bell, M. Tame, A. S. Clark, R. Nock, W. Wadsworth, and J. G. Rarity, “Experimental characterization of universal one-way quantum computing,” New Journal of Physics, vol. 15, no. 5, p. 053030, 2013.
[104] T. Bodiya and L.-M. Duan, “Scalable generation of graph-state entanglement through realistic linear optics,” Physical review letters, vol. 97, no. 14, p. 143601, 2006.
[105] M. Van den Nest, A. Miyake, W. Dür, and H. J. Briegel, “Universal resources for measurement-based quantum computation,” Physical review letters, vol. 97, no. 15, p. 150504, 2006.
[106] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Physical Review Letters, vol. 98, no. 23, p. 230501, 2007.
[107] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in matlab,” in 2004 IEEE international conference on robotics and automation (IEEE Cat. No.
04CH37508), pp. 284–289, IEEE, 2004.
[108] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “Sdpt3—a matlab software package for semidefinite programming, version 1.3,” Optimization methods and software, vol. 11, no. 1-4, pp. 545–581, 1999.
[109] E. D. Andersen and K. D. Andersen, “The mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm,” in High performance optimization, pp. 197–232, Springer, 2000.
[110] S. Popescu and D. Rohrlich, “Quantum nonlocality as an axiom,” Foundations of Physics, vol. 24, no. 3, pp. 379–385, 1994.
[111] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Reviews of Modern Physics, vol. 86, no. 2, p. 419, 2014.
[112] C. Kiefer, “The einstein, podolsky, and rosen paper,” in Albert Einstein, Boris Podolsky, Nathan Rosen, pp. 27–52, Springer, 2022.
[113] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, “Advances in quantum teleportation,” Nature photonics, vol. 9, no. 10, pp. 641–652, 2015.
[114] S. Dogra and G. S. Paraoanu, “Quantum process tomography of adiabatic and superadiabatic raman passage,” in AIP Conference Proceedings, vol. 2362, p. 030004, AIP Publishing LLC, 2021.
[115] A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to compare real and ideal quantum processes,” Physical Review A, vol. 71, no. 6, p. 062310, 2005.
[116] R. F. Werner, “Optimal cloning of pure states,” Physical Review A, vol. 58, no. 3, p. 1827, 1998.
[117] Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal bell-state synthesizer,” Physical Review A, vol. 67, no. 1, p. 010301, 2003.
[118] C.-C. Kuo, S.-H. Chen, W.-T. Lee, H.-M. Chen, H. Lu, and C.-M. Li, “Quantum process capability,” Scientific reports, vol. 9, no. 1, pp. 1–12, 2019.
[119] S.-H. Chen, M.-L. Ng, and C.-M. Li, “Quantifying entanglement preservability of experimental processes,” Physical Review A, vol. 104, no. 3, p. 032403, 2021.