| 研究生: |
張明峯 Jang, Ming-Feng |
|---|---|
| 論文名稱: |
高度立體規則度聚(3-己烷基噻吩)及其掺合系統之固態結構與載子傳輸性質研究 Studies of Thin Film Structure and Charge Transport Properties of Regioregular Poly(3-hexylthiophene) and Its Blends |
| 指導教授: |
鄭弘隆
Cheng, Horng-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 高分子 、有機薄膜電晶體 |
| 外文關鍵詞: | polymer, organic thin-film transistors |
| 相關次數: | 點閱:102 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究以高分子半導體regioregular poly(3-hexylthiophene) (RR-P3HT) 為主動層之有機薄膜電晶體的載子傳輸性質。第一部份,使用RR-P3HT混摻一絕緣性高分子poly(methyl methacrylate) (PMMA)當主動層,研究固態結構與載子傳輸特性的關係。第二部份,研究長時間操作下RR-P3HT元件載子傳輸的穩定性,探討偏壓應力對RR-P3HT固態薄膜結構與對應元件電性的影響。
第一部份,首先利用X-ray繞射、吸收光譜與拉曼光譜研究不同混摻比例RR-P3HT/PMMA薄膜的固態結構,結果指出掺合PMMA會降低RR-P3HT鏈間的交互作用與RR-P3HT的有效共軛鏈長,阻礙RR-P3HT形成片狀結晶結構,並使RR-P3HT在掺合薄膜中的排列較無次序性。電性方面,純RR-P3HT的元件,受雜質與環境(如水、氧)影響甚大,無法形成理想的場效通道,藉由掺合PMMA可改善此現象,但RR-P3HT於摻合薄膜中,表現出較差的載子傳輸特性,歸因於稀釋效應與較差的結晶結構。
第二部份,在高真空量測環境下,長時間的偏壓應力對RR-P3HT有機薄膜電晶體的載子遷移率沒有產生任何退化,但導通電流會降低,臨界電壓往負電壓的方向漂移,導通電流與臨界電壓的變化在偏壓應力停止後,經過長時間也無法完全恢復到初始值。固態結構方面,利用偏極化吸收光譜與偏極化拉曼光譜研究偏壓應力對RR-P3HT固態薄膜結構的影響,結果指出長時間的偏壓應力會增加RR-P3HT鏈間的交互作用,並產生異向性,平行電場方向的增加幅度大於垂直電場方向。
In this study, electronic transport properties of regioregular poly(hexylthiophene) (RR-P3HT) based organic thin-film transistors (OTFTs) were investigated. In part 1, the correlation between thin-film structure and carrier transport properties were investigated using RR-P3HT blending poly (methyl methacrylate) (PMMA) as an active layer in OTFTs. In the second part, bias-stress induced electronic characteristics variation of RR-P3HT-based OTFTs and structural changes of RR-P3HT active layer were studied.
Part 1: The RR-P3HT/PMMA blend films with different weight fractions were fabricated and their characteristics were analyzed using X-ray diffraction (XRD), absorption spectroscopy, and Raman spectroscopy. Structural analysis revealed that blending of PMMA reduced interchain interaction and efficient conjugation length of RR-P3HT, interrupted RR-P3HT to form lamellar microstructures, and increased the RR-P3HT chain disorder. Analysis of electric characteristics suggests that poor performance of the neat RR-P3HT OTFTs in air occurs due to the humidity and oxygen in air ambient, consequently limiting the formation of ideal field-effect channel. The phenomenon was improved by blending the PMMA into the RR-P3HT and thus inducing a sharper field-effect channel. However, we observed inferior field-effect mobilities in RR-P3HT/PMMA blends due to the dilute effect and inferior structure of RR-P3HT.
Part 2: The long-term electronic stability of RR-P3HT-based OTFTs were studied and the corresponding thin-film structure of RR-P3HT were also analyzed using XRD, absorption spectroscopy, and polarized Raman spectroscopy. After long-term bias stress, we have not found significant degradation in the field-effect mobility of RR-P3HT-based OTFTs in vacuum environment. However, the bias stress induced a decreasing output on-current, while threshold voltage shifted towards negative. The process was found to be partially irreversible. Structural analysis showed that the interchain interaction of RR-P3HT could be enhanced after long-term bias stress, thus resulting in occurrence of slight structural anisotropy, especially in the direction parallel to source-to-drain field.
[1] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics” Adv. Mater., Vol. 14, pp. 99-117, 2002.
[2] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes” Appl. Phys. Lett., Vol. 51, pp. 913-915, 1987.
[3] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, “Light-emitting diodes based on conjugated polymers” Nature, Vol. 347, pp. 539-541, 1990.
[4] F. Ebisawa, T. Kurokawa and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface” J. Appl. Phys., Vol. 54, pp. 3255-3259, 1983.
[5] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin film” Appl. Phys. Lett., Vol. 49, pp. 1210-1212, 1986.
[6] W. Riess, S. Karg, V. Dyakonov, M. Meier and M. Schwoerer, “Electroluminescence and photovoltaic effect in PPV schottky diodes” J. Lumine., Vol. 60, pp. 906-911, 1994.
[7] N. S. Sariciftci, D. Braun,C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells” Appl. Phys. Lett., Vol. 62, pp. 585-587, 1993.
[8] H. Antoniadis, M. A. Abkowitz, J. A. Osaheni, S. A. Jenekhe and M. Stolka, “Generation and drift of photocarriers in a conjugated ladder polymer” Synth. Met. Vol. 60, pp. 149-157, 1993.
[9] Y. Sun, Y. Liu and D. Zhu, “Advances in organic field-effect transistors” J. Mater. Chem., Vol. 15, pp. 53-65, 2005.
[10] H. Sirringhaus, N. Tessler and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers” Science, Vol. 280, pp. 1741-1744, 1998.
[11] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters and D. M. de Leeuw, “Low-cost all-polymer integrated circuits” Appl. Phys. Lett., Vol. 73, pp. 108-110, 1998.
[12] G. H. Gelinck, T. C. T. Geuns and D. M. de Leeuw, “High-performance all-polymer integrated circuits” Appl. Phys. Lett., Vol. 77, pp. 1487-1489, 2000.
[13] B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz and W. Li, “Large-scale complementary integrated circuits based on organic transistors” Nature, Vol. 403, pp. 521-523, 2000.
[14] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals” Science, Vol. 303, pp. 1644-1646, 2004.
[15] G. Horowitz, “Organic field-effect transistors” Adv. Mater., Vol. 10, pp. 365-3777, 1998.
[16] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, “Field-effect transistors made from solution-processed organic semiconductors” Synth. Met., Vol. 88, pp. 37-55, 1997.
[17] E. M. Conwell “Impurity band conduction in germanium and silicon” Phys. Rev., Vol. 103, pp. 51-61, 1956.
[18] A. Miller and E. Abrahams “Impurity conduction at low concentrations” Phys. Rev., Vol. 120, pp. 745-755, 1956.
[19]H. Sirringhaus , P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers” Nature, Vol. 401, pp. 685-688, 1999.
[20]G. Wang, J. Swensen, D. Moses, and A. J. Heeger, “Increased mobility from regioregular poly(3-hexylthiophene) field effect transistor” J. Appl. Phys., Vol. 93 pp.6137-6141, 2003.
[21] D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu and K. Cho, “Enhancement of field-effect mobility due to surface-mediated molecular ordering in regioregular polythiophene thin film transistors” Adv. Funct. Mater., Vol. 15, pp. 77-82, 2005.
[22] M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg and O. Wennerström, “Light-emitting diodes with variable colors from polymer blends” Nature, Vol. 372, pp. 444-446, 1994.
[23] G. Yu, H. Nishino, A. J. Heeger, T. -A. Chen and R. D. Rieke, “Enhanced electroluminescence from semiconducting polymer blends” Synth. Met., Vol. 72, pp. 249-252, 1995.
[24] X. Zhang, D. M. Kale and S. A. Jenekhe, “Electroluminescence of multicomponent conjugated polymers. 2. photophysics and enhancement of electroluminescence from blends of polyquinolines” Macromolecules, Vol. 35, pp. 382-393, 2002.
[25] G. Yu and A. J. Heeger, “Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions” J. Appl. Phys., Vol. 78, pp. 4510-4515, 1995.
[26] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks” Nature, Vol. 376, pp. 498-500, 1995.
[27] S. A. Jenekhe and S. Yi, “Highly photoconductive nanocomposites of metallophthalocyanines and conjugated polymers” Adv. Mater., Vol. 12, pp. 1274-1278, 2000.
[28] A. Babel and S. A. Jenekhe, “N-channel field-effect transistors from blends of conjugated polymers” J. Phys. Chem. B, Vol. 106, pp. 6129-6132, 2002.
[29] A. Babel and S. A. Jenekhe, “Field-effect mobility of charge carriers in blends of regioregular poly(3-alkylthiophene)s” J. Phys. Chem. B, Vol. 107, pp. 1749-1754, 2003.
[30] A. Babel and S. A. Jenekhe, “Charge carrier mobility in blends of poly(9,9-dioctylfluorene) and poly(3-hexylthiophene)” Macromolecules, Vol. 36, pp. 7759-7764, 2003.
[31] R. Österbacka, C. P. An, X. M. Jiang and Z. V. Vardeny, “Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals” Science, Vol. 287, pp. 839-842, 2000.
[32] T. A. Chen, X. Wu and R. D. Rieke, “Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by rieke zinc: their characterization and solid-state properties” J. Am. Chem. Soc., Vol. 117, pp. 233-244, 1995.
[33] K. Tashiro, K. Ono, Y. Minagawa, M. Kobayashi, T. Kawai, K. Yoshino, “Structure and thermochromic solid-state phase transition of poly(3-alkylthiophene)” J. Polym. Sci., Vol. 29, pp. 1223-1233, 1991.
[34] K. E. Aasmundtveit, E. J. Samuelsen, M. Guldstein, C. Steinsland, O. Flornes, C. Fagermo, T. M. Seeberg, L. A. A. Pettersson, O. Inganäs, R. Feidenhans’l and S. Ferrer, “Structural anisotropy of poly(alkylthiophene) films” Macromolecules, Vol. 33, pp. 3120-3127, 2000.
[35] H. Sirringhaus, N. Tessler and R. H. Friend, “Integrated, high-mobility polymer field-effect transistors driving polymer light-emitting diodes” Synth. Met., Vol. 102, pp. 857-860, 1999.
[36] T. Kaniowski, W. gunny , S. Niziol, J. Sanetra and M. Trznadel, “X-ray diffraction and optical studies of fractionalized regioregular poly(3-hexylthiophene)” Synth. Met., Vol. 92, pp. 7-12, 1998.
[37] H. Heil, T. Finnberg, N. von Malm, R. Schmechel, and H. von Seggern, “The influence of mechanical rubbing on the field-effect mobility in polyhexylthiophene” J. Appl. Phys., Vol. 93, pp. 1636-1641, 2003.
[38] A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf and D. Neher, “Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors” Adv. Funct. Mater., Vol. 14, pp. 757-764, 2004.
[39] T. G. Bäcklund, H. G. O. Sandberg, R. Österbacka, H. Stubb, M. Torkkeli and R. Serimaa, “A novel method to orient semiconducting films” Adv. Funct. Mater., Vol. 15, pp. 1095-1099, 2005.
[40] P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene)” Phys. Rev. B, Vol. 67, p. 064203, 2003.
[41] G. Louarn, M. Trznadel, J. P. Buisson, J. Laska, A. Pron, M. Lapkowski and S. Lefrant, “Raman spectroscopic studies of regioregular poly(3-alkylthiophenes)” J. Phys. Chem., Vol. 100, pp. 12532-12539, 1996.
[42] G. Louarn, M. Trznadel, M. Zagorska, M. Lapkowski, A. Pron, J. P. Buisson and S. Lefrant, “Spectroscopic studies of regioregular poly(3-decylthiophene)” Synth. Met., Vol. 84, pp. 579-580, 1997.
[43] Z. Bao, A. Dodabalapur and A. J. Lovinger, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility” Appl. Phys. Lett., Vol. 69, pp. 4108-4110, 1996.
[44] M. S. A. Abdou, F. P. Orfino, Z. W. Xie, M. J. Deen, and S. Holdcroft, “Reversible charge transfer complexes between molecular oxygen and poly(3-alkylthiophene)s” Adv. Mater., Vol. 6, pp. 838-841, 1994.
[45] M. S. A. Abdou, F. P. Orfino, Y.-K. Son, and S. Holdcroft, “Interaction of oxygen with conjugated polymers : charge transfer complex formation with poly(3-alkythiophenes)” J. Am. Chem. Soc., Vol. 119, pp. 4518-4524, 1997.
[46] S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata and K. Yase, “Influence of moisture on device characteristics of polythiophene-based field-effect transistors” J. Appl. Phys., Vol. 95, pp. 5088-5093, 2004.
[47] D. B. A. Rep, B. H. Huisman, E. J. Meijer, P. Prins and T. M. Klapwijk, “Charge-transport in partially-ordered regioregular poly(3-hexylthiophene) studied as a function of the charge-carrier density” Mat. Res. Soc. Symp. Proc., Vol. 660, p. JJ7.9, 2001.
[48] D. B. A. Rep, A. F. Morpurgo and T.M. Klapwijk, “Doping-dependent charge injection into regioregular poly(3-hexylthiophene) ” Organic Electronics, Vol. 4, pp. 201-207, 2003.
[49] B. H. Hamadani and D. Natelson, “Nonlinear charge injection in organic field-effect transistors” J. Appl. Phys., Vol. 97, p. 064508, 2005.
[50] B. H. Hamadani, H. Ding, Y. Gao and D. Natelson, “Doping-dependent charge injection and band alignment in organic field-effect transistors” Phys. Rev. B , Vol. 72, p. 235302, 2005.
[51] H. Sirringhaus, “Device physics of solution-processed organic field-effect transistors” Adv. Mater., Vol. 17, pp. 2411-2425, 2005.
[52] M. Matters, D. M. de Leeuw, P. T. Herwig and A. R. Brown, “Bias-stress induced instability of organic thin film transistors” Synth. Met., Vol. 102, pp. 998-999, 1999.
[53] R. A. Street, A. Salleo and M. L. Chabinyc, “Bipolaron mechanism for bias-stress effects in polymer transistors” Phys. Rev. B , Vol. 68, p. 085316, 2003.
[54] A. Salleo and R. A. Street, “Kinetics of bias stress and bipolaron formation in polythiophene” Phys. Rev. B , Vol. 70, p. 235324, 2004.
[55] R. A. B. Devine, “Influence of bias stressing and irradiation on poly-three-hexylthiophene based field effect transistors” J. Appl. Phys., Vol. 99, p. 083701, 2006.
[56] H. Heil, T. Finnberg, N. von Malm, R. Schmechel and H. von Seggern, “The influence of mechanical rubbing on the field-effect mobility in polyhexylthiophene” J. Appl. Phys., Vol. 93, pp. 1636-1641, 2003.