簡易檢索 / 詳目顯示

研究生: 周宛璇
Chou, Wan-Hsuan
論文名稱: 微米/奈米膠球三維細胞成長基的製備與表面改質效應研究
Fabrication and Surface Modification of Micro/Nano Spherical Hydrogel Scaffolds for 3D Cell Culture
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 83
中文關鍵詞: 三維細胞培養微米球奈米顆粒陽離子單體明膠
外文關鍵詞: 3D cell culture, microspheres, nanoparticles, cationic monomer, gelatin
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究展示了聚(2-甲基丙烯酸羥乙酯)(PHEMA)微米與奈米膠球的合成,以用作在體外構建三維人工組織的細胞支架。微米球和奈米球分別使用懸浮聚合與油包水乳化聚合方法來製備,過程中使用無毒的介面活性劑。聚合的微米球直徑大約為 500 μm,另外,奈米球的平均粒徑為 450 nm。本實驗研究了微粒和奈米顆粒在三維細胞組織培養中的應用,微米球支架用於人類真皮纖維細胞(NHDF)的培養,而奈米顆粒用於小鼠纖維細胞(L929)的培養。為了促進細胞黏附能力,具有陽離子電荷的單體3-(甲基丙烯醯丙基)三甲基氯化銨(MPTC)共聚合於微米球中,結果顯示MPTC 含量除了增強熱穩定性外也改善細胞附著力。另外,研究了使用明膠和殼聚醣塗佈於微米球的表面是否對細胞生長有增益效果,結果指出適當的陽離子電荷含量和明膠塗層都促進了人類真皮纖維細胞在微米球上的生長,相較於其他結果,具有2% MPTC含量的PHEMA 微米球在 3D支架中表現出最好的細胞存活率和增殖能力。至於與微米球支架概念不同的奈米粒子,其結果顯現出通過與奈米粒子的混合,多層結構的L929細胞可通過與奈米粒子的混合來實現。根據結果,含有微量MPTC與明膠塗層的 PHEMA 微米球成功應用在體外NHDF細胞在三維空間的培養,此外,也證明了PHEMA奈米顆粒具有三維組織工程的可能性。

    This study demonstrates the synthesis of poly(2-hydroxyethyl methacrylate) (PHEMA) micro-/nano-particles using as scaffolds to construct three-dimensional (3D) artificial tissues in vitro. Microsphere and nanosphere hydrogel scaffolds were synthesized via suspension and inverse emulsion polymerization. The synthesized average diameter of microspheres were around 500 μm, and the average size of nanoparticles was 450 nm. Applications of both microparticles and nanoparticles on 3D cell culture were investigated. Normal human dermal fibroblast (NHDF) cells were seeded onto microsphere scaffolds, whereas mouse fibroblast L929 cells were cultured with nanoparticles. To promote cell adhesion, cationic charged monomer [3-(methacryloylamino)propyl]trimethyl- ammonium chloride (MPTC) was introduced into the microspheres. In addition, enhancement of cell growing via the surface coating of gelatin and chitosan onto the microspheres was investigated. Increase of MPTC content enhances the thermal stability and cell attachment obviously. The fluorescent images indicated that both cationic charge content and gelatin-coating elevated the growth of NHDF cells on microparticles. In terms of results, PHEMA microspheres with an optimal positive charge content of 2% MPTC demonstrate high cell viability and proliferation rate in 3D scaffolds. As for PHEMA nanoparticles, fabrication of the multilayer of L929 cells was achieved by sedimentation of the blending with nanoparticles. Based on the results, NHDF cell culture in 3D space was achieved using PHEMA microsphere scaffolds in vitro. Furthermore, the possibility of 3D tissue engineering using nanoparticles is also evidenced.

    Abstract I 中文摘要 II 誌謝 III Contents IV List of Figures VII List of Tables XII 1. Introduction 1 1-1 Preface 1 1-2 Research motivation 2 2. Literature Review 3 2-1 Heterogeneous Free-Radical Polymerization Techniques 3 2-1-1 Suspension Polymerization 4 2-1-2 Emulsion Polymerization 5 2-1-3 Inverse Emulsion Polymerization 8 2-2 Tissue Engineering 8 2-2-1 Introduction 9 2-2-2 3D Scaffolds 9 2-2-3 Types of 3D Scaffolds-Based on Their Geometry [14] 12 2-2-4 Scaffolds Fabrication Methods 16 2-3 Microspheres/Microparticles for Cell Culture 17 2-3-1 Introduction 17 2-3-1 3D Cell Culture Technology Using Microcarriers 18 2-3-2 Characteristics of Microparticles 19 2-4 Surface Modification of Microparticle Scaffolds 20 2-4-1 Modification with Charged Groups 20 2-4-2 Surface Modification with Proteins 21 2-4-3 Surface Modification with Bioactive Compounds 22 2-5 Poly(HEMA) 23 2-5-1 Characteristics of Poly(HEMA) 23 2-5-2 Applications of Poly(HEMA) 23 2-6 Gelatin 26 2-6-1 Types of Gelatins 27 2-7 Chitosan 27 3. Experimental Section 29 3-1 Materials 29 3-2 Instruments 31 3-3 Experimental Section 32 3-3-1 Synthesis of Poly(HEMA) and Poly(HEMA-co-MPTC)) Microparticles 32 3-3-2 Surface Modification of Poly(HEMA) Microparticles 34 3-3-3 Equilibrium Water Content of Poly(HEMA) Microparticles 36 3-3-4 Characterization of Poly(HEMA) Microparticles 36 3-3-5 Synthesis of Poly(HEMA) Nanoparticles 37 3-3-6 Characterization of Poly(HEMA) Nanoparticles 41 3-3-7 Cell Culture Study 41 4. Results and Discussions 44 4-1 Synthesis of Poly(HEMA) Microparticles 44 4-1-1 Characterization of Poly(HEMA) Microparticles 45 4-1-2 Morphology of Poly(HEMA) Microparticles 46 4-1-3 Thermal Properties of Poly(HEMA) Microparticles 49 4-1-4 Equilibrium Water Content of Poly(HEMA) Microparticles 50 4-2 Surface Modification of Poly(HEMA) Microparticles 51 4-2-1 Morphology of Modified Poly(HEMA) Microparticles 52 4-2-2 Analysis of Surface-Modified Poly(HEMA) Microparticles 53 4-3 Synthesis of Poly(HEMA) Nanoparticles via Emulsion Polymerization 55 4-3-1 Size Distribution of Poly(HEMA) Nanoparticles 55 4-4 Synthesis of Poly(HEMA) Nanoparticles via Inverse Emulsion Polymerization 56 4-4-1 Size Distribution of Poly(HEMA) Nanoparticles 59 4-4-2 Morphology of Poly(HEMA) Nanoparticles 61 4-4-3 Characterization of Poly(HEMA) Nanoparticles 62 4-5 Studies on Microsphere Scaffolds for Cell Culture 64 4-5-1 Cell Growth on poly(HEMA) Microsphere Scaffolds 65 4-5-2 Cell Proliferation on Poly(HEMA) Microsphere Scaffolds 68 4-5-3 Cell Adhesion on Poly(HEMA) Microsphere Scaffolds 72 4-5-4 Cell Viability on Poly(HEMA) Microsphere Scaffolds 73 4-5-5 Cell Growth with poly(HEMA) Nanoparticles 75 5. Conclusions 77 Reference 78

    1. K. Duval, H. Grover, L.H. Han, Y. Mou, A.F. Pegoraro, J. Fredberg, and Z. Chen, Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda), 2017. 32(4): p. 266-277.
    2. S.K. Nitta and K. Numata, Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci, 2013. 14(1): p. 1629-54.
    3. D. Hunkeler, F. Candau, C. Pichot, A.E. Hemielec, T.Y. Xie, J. Barton, V. Vaskova, J. Guillot, M.V. Dimonie, and K.H. Reichert, Heterophase Polymerizations - a Physical and Kinetic Comparison and Categorization. Theories and Mechanism of Phase Transitions, Heterophase Polymerizations, Homopolymerization, Addition Polymerization, 1994. 112: p. 115-133.
    4. A.T. Jensen, W.S. Neto, G.R. Ferreira, A.F. Glenn, R. Gambetta, S.B. Gonçalves, L.F. Valadares, and F. Machado, Synthesis of polymer/inorganic hybrids through heterophase polymerizations, in Recent Developments in Polymer Macro, Micro and Nano Blends. 2017. p. 207-235.
    5. M.C. Pinto, J.G. Santos Jr, F. Machado, and J.C. Pinto, Suspension polymerization processes. Encyclopedia of Polymer Science and Technology, 2002.
    6. M. Wang, X. Ge, and Z. Zhang, Radiation Emulsion Polymerization, in Radiation Technology for Advanced Materials. 2019. p. 183-205.
    7. C.S. Chern, Emulsion polymerization mechanisms and kinetics. Progress in Polymer Science, 2006. 31(5): p. 443-486.
    8. A.N.M.B. El-hoshoudy, Emulsion Polymerization Mechanism. Recent Research in Polymerization, 2018: p. 1.
    9. Y. Chen, G. Shan, and P. Pan, Role of added amphiphilic cationic polymer in the stabilization of inverse emulsions. Colloid and Polymer Science, 2017. 295(11): p. 2207-2215.
    10. M.L. Almeida, R.M. Charin, M. Nele, and F.W. Tavares, Stability studies of high-stable water-in-oil model emulsions. Journal of Dispersion Science and Technology, 2016. 38(1): p. 82-88.
    11. F.J. O'Brien, Biomaterials & scaffolds for tissue engineering. Materials Today, 2011. 14(3): p. 88-95.
    12. F. Akter, Principles of Tissue Engineering, in Tissue Engineering Made Easy. 2016. p. 3-16.
    13. A. Khademhosseini, J.P. Vacanti, and R. Langer, Progress in tissue engineering. Scientific American, 2009. 300(5): p. 64-71.
    14. M.P. Nikolova and M.S. Chavali, Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater, 2019. 4: p. 271-292.
    15. J.L. Olson, A. Atala, and J.J. Yoo, Tissue engineering: current strategies and future directions. Chonnam Med J, 2011. 47(1): p. 1-13.
    16. P.X. Ma, Scaffolds for tissue fabrication. Materials Today, 2004. 7(5): p. 30-40.
    17. A. Marrella, T.Y. Lee, D.H. Lee, S. Karuthedom, D. Syla, A. Chawla, A. Khademhosseini, and H.L. Jang, Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Mater Today (Kidlington), 2018. 21(4): p. 362-376.
    18. S. Shruti, A.J. Salinas, G. Lusvardi, G. Malavasi, L. Menabue, and M. Vallet-Regi, Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses. Acta Biomater, 2013. 9(1): p. 4836-44.
    19. W.-J. Li and J.A. Cooper, Fibrous Scaffolds for Tissue Engineering, in Biomaterials for Tissue Engineering Applications. 2011. p. 47-73.
    20. B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D.S. Kumar, Polymeric Scaffolds in Tissue Engineering Application: A Review. International Journal of Polymer Science, 2011. 2011: p. 1-19.
    21. M. Singh, C.P. Morris, R.J. Ellis, M.S. Detamore, and C. Berkland, Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Tissue Eng Part C Methods, 2008. 14(4): p. 299-309.
    22. D.W. Hutmacher, M. Sittinger, and M.V. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol, 2004. 22(7): p. 354-62.
    23. D.W. Hutmacher and S. Cool, Concepts of scaffold-based tissue engineering--the rationale to use solid free-form fabrication techniques. J Cell Mol Med, 2007. 11(4): p. 654-69.
    24. J.Y. Kim, G.Z. Jin, I.S. Park, J.N. Kim, S.Y. Chun, E.K. Park, S.Y. Kim, J. Yoo, S.H. Kim, J.W. Rhie, and D.W. Cho, Evaluation of solid free-form fabrication-based scaffolds seeded with osteoblasts and human umbilical vein endothelial cells for use in vivo osteogenesis. Tissue Eng Part A, 2010. 16(7): p. 2229-36.
    25. K. Leong, s.C. Chua, N. Sudarmadji, and W. Yeong, Engineering functionally graded tissue engineering scaffolds. Journal of the mechanical behavior of biomedical materials, 2008. 1(2): p. 140-152.
    26. D.Y.S. Chau, K. Agashi, and K.M. Shakesheff, Microparticles as tissue engineering scaffolds: manufacture, modification and manipulation. Materials Science and Technology, 2013. 24(9): p. 1031-1044.
    27. Y.T. Matsunaga, Y. Morimoto, and S. Takeuchi, Molding cell beads for rapid construction of macroscopic 3D tissue architecture. Adv Mater, 2011. 23(12): p. H90-4.
    28. D. Smith, C. Herman, S. Razdan, M.R. Abedin, W.V. Stoecker, and S. Barua, Microparticles for Suspension Culture of Mammalian Cells. ACS Applied Bio Materials, 2019. 2(7): p. 2791-2801.
    29. G. Ma and Z.-G. Su, Microspheres and microcapsules in biotechnology: design, preparation and applications. 2013: CRC Press.
    30. M.B. Oliveira and J.F. Mano, Polymer-based microparticles in tissue engineering and regenerative medicine. Biotechnol Prog, 2011. 27(4): p. 897-912.
    31. H.-I. Chang and Y. Wang, Cell responses to surface and architecture of tissue engineering scaffolds, in Regenerative medicine and tissue engineering-cells and biomaterials. 2011, InTechOpen.
    32. M. Ferrari, F. Cirisano, and M.C. Morán, Mammalian cell behavior on hydrophobic substrates: influence of surface properties. Colloids and Interfaces, 2019. 3(2): p. 48.
    33. N.G. Maroudas, Adhesion and spreading of cells on charged surfaces. J Theor Biol, 1975. 49(2): p. 417-24.
    34. H. Jung, B. Kwak, H.S. Yang, G. Tae, J.-S. Kim, and K. Shin, Attachment of cells to poly(styrene-co-acrylic acid) thin films with various charge densities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313-314: p. 562-566.
    35. P. Gröhn, G. Klöck, and U. Zimmermann, Collagen-coated Ba2+-alginate microcarriers for the culture of anchorage-dependent mammalian cells. Biotechniques, 1997. 22(5): p. 970-975.
    36. A. Bukowska, W. Bukowski, and J. Noworól, New 2-hydroxyethyl methacrylate resins with good swelling characteristics. Journal of Applied Polymer Science, 2006. 101(3): p. 1487-1493.
    37. A.D. Cook, R.D. Sagers, and W.G. Pitt, Bacterial adhesion to poly(HEMA)-based hydrogels. J Biomed Mater Res, 1993. 27(1): p. 119-26.
    38. C.C. Robert, P.A. Buri, and N.A. Peppas, Influence of the drug solubility and dissolution medium on the release from poly (2-hydroxyethylmethacrylate) microspheres. Journal of controlled release, 1987. 5(2): p. 151-157.
    39. G. Bayramoğlu, E. Yalçin, and M.Y. Arıca, Immobilization of urease via adsorption onto l-histidine–Ni(II) complexed poly(HEMA-MAH) microspheres: Preparation and characterization. Process Biochemistry, 2005. 40(11): p. 3505-3513.
    40. V.B. Djagny, Z. Wang, and S. Xu, Gelatin: a valuable protein for food and pharmaceutical industries: review. Crit Rev Food Sci Nutr, 2001. 41(6): p. 481-92.
    41. K. Su and C. Wang, Recent advances in the use of gelatin in biomedical research. Biotechnol Lett, 2015. 37(11): p. 2139-45.
    42. J. Nilsen-Nygaard, S. Strand, K. Vårum, K. Draget, and C. Nordgård, Chitosan: Gels and Interfacial Properties. Polymers, 2015. 7(3): p. 552-579.
    43. M.M. Islam, M. Shahruzzaman, S. Biswas, M. Nurus Sakib, and T.U. Rashid, Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater, 2020. 5(1): p. 164-183.
    44. A.G. Figueiredo, A.R. Figueiredo, A. Alonso-Varona, S.C. Fernandes, T. Palomares, E. Rubio-Azpeitia, A. Barros-Timmons, A.J. Silvestre, C. Pascoal Neto, and C.S. Freire, Biocompatible bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films. Biomed Res Int, 2013. 2013: p. 698141.
    45. K. Demirelli, M. Coşkun, and E. Kaya, A detailed study of thermal degradation of poly (2-hydroxyethyl methacrylate). Polymer degradation and stability, 2001. 72(1): p. 75-80.

    無法下載圖示 校內:2026-07-01公開
    校外:2026-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE