簡易檢索 / 詳目顯示

研究生: 張可冀
Chang, Ke-Ji
論文名稱: 混合堆肥巨基因庫中篩選出之新穎生質能源纖維素分解酶
A novel β-endoglucanase from a variety of manure microorganism mategenome for biomass conversion
指導教授: 張敏政
Chang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 79
中文關鍵詞: 巨基因庫纖維素分解酶混合堆肥
外文關鍵詞: mategenome, dinitrosalicylic acid, p-NPC, endoglucanase, zymography, defibrillation
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發展可靠的並且是環保的替代性生質能源是一項重要的議題。尋找新穎的纖維酵素對生質能源的製程是十分重要的。在本篇研究中,本實驗室利用混合堆肥為來源建立一個涵蓋959 Mbps的微生物巨基因庫,並自其中篩選出三個具有纖維素分解活性的重組基因菌株。經由生物資訊的方式進行去氧核醣核酸序列與胺基酸序列的比對,發現三者與目前已發表的纖維酵素相似度低,係為新穎的纖維酵素。並將轉殖菌株進一步做演化樹譜系分析,發現其中一個候選菌株中的纖維素活性是來屬於Glycoside Hydrolase Family 9 (GH 9)的纖維酵素家族,將之命名為htp5;再將htp5構築到表現載體上生產纖維酵素HTP5,利用液相層析管柱將HTP5純化;並進一步的以Dinitrosalicylic acid (DNS)方式分析酵素活性,發現這個新穎的纖維酶在酸鹼值7.0和溫度55℃時,具有最佳的分解能力。並且在55 ℃放置五個小時後,測量其酵素殘存的相對活性仍然接近100 %;在鈣離子的存在下可提升酵素的活性達1.8倍,並在酵素動力學的分析後發現HTP5對於合成的纖維雙醣分子p-nitrophenyl beta-D-cellobioside (p-NPC)具有高度的轉化能力。HTP5 對於可溶性的纖維素分子(例如:carboxymethyl cellulose)具有高度的分解能力,可用於生質能後段的裂解纖維素醣化過程;而且發現HTP5對於累積在纖維布料上的微細纖維(microfibrils)也具有清除的洗滌能力,並且具備抵抗隂離子介面活性劑與抗氧化劑的功能。

    Development of renewable fuel alternative with a reduced environment pollution footprint is a critical issue. Discovery of novel cellulolytic enzymes for enhancing the biomass conversion is important. In this study, the metagenomic library was established from a variety of manure microorganisms. The constructed metagenome coverage is approximately 959 Mbps, and three novel clones exhibiting cellulolytic activity were isolated. One of the clones was selected for further investigation. The resulting database and the phylogenetic analysis revealed that the cloned recombinant htp5 expressed in E.coli is a novel cellulase which belongs to Glycoside Hydrolase Family 9 (GH 9). The purified enzyme from E. coli containing HTP5 exhibited optimal cellulolytic activity with pH=7.0 and 55 °C base on Dinitrosalicylic acid (DNS) method. HTP5 exhibited thermal stability at 55 °C after 5 hours incubation and increased 1.8-fold of the catalytic ability by adding 10 mM calcium. It displays high enzymatic activity for its synthetic substrate p-nitrophenyl beta-D-cellobioside (p-NPC; kcat = 94382 min-1). The aforementioned endocellulase HTP5 belongs to GH 9 could degrade the soluble cellulase such as carboxymethyl cellulose (CMC) and equips with defibrillation activity to cotton and lyocell knit fabric. HTP5 was highly resistant to an anionic surfactant and an oxidizing agent. This result indicated that HTP5 may be suitable for last-stage processing of biomass conversion and the microfibrils polishing from fabric.

    中文摘要 I ABSTRACT II 誌 謝 III CONTENTS OF THE TABLES VII CONTENTS OF THE FIGURES VIII CHAPTER 1 INTRODUCTION 1 1-1. THE GLOBAL ENERGY CRISIS AND ENVIRONMENT POLLUTION 1 1-2. BIOMASS IS THE ONLY DOMESTIC, SUSTAINABLE AND RENEWABLE PRIMARY ENERGY RESOURCE 1 1-3. THE PROCESSION FOR BIOLOGICAL CONVERSION OF CELLULOSIC BIOMASS TO ETHANOL 2 1-4. THE DEVELOPMENT OF BIOFUEL 2 1-5. ADVANCED BIOLOGICAL PROCESSING IN BIOMASS CONVERSION 3 1-6. ENZYMES FOR HYDROLYSIS OF LIGNOCELLULOSE 3 1-7. THE MAJOR INDUSTRIAL SOURCES OF CELLULASES AND HEMICELLULASES 4 1-8. DISCOVER THE UNCULTURED MICROORGANISMS BY GENETIC DIVERSITY METAGENOME 4 1-9. DISRUPTION OF FIBER STRUCTURE BY THE BINDING DOMAIN OF BACTERIA 5 CHAPTER 2 MATERIALS AND METHODS 6 2-1. ENVIRONMENTAL METAGENOMIC DNA LIBRARY CONSTRUCTION 6 2-1-1. Genomic DNA source, bacteria strain and mediums 6 2-1-1-1. Bacteria strain 6 2-1-1-2. Vectors 6 2-1-1-3. Antibiotic dosage and IPTG concentration 7 2-1-1-4. Medium 7 2-1-2. Genomic DNA extracted 9 2-1-3. Preparation of the Genomic DNA fragment 12 2-1-4. Separation of the DNA fragment by sucrose density gradient centrifugation 12 2-1-5. Construction of the genomic DNA fragments with the plasmid fragments 17 2-1-6. Transformation of the original Genbank plasmid by heat shock method 18 2-1-7. Constructed Genbank plasmid DNA extraction 18 2-1-8. Estimation of the integrity of metagenomic library 19 2-2. SELECTION OF FUNCTIONAL GENETIC ELEMENTS FROM METAGENOMIC LIBRARY 20 2-2-1. Preparation of the transgenic clones from metagenomic library for screening 20 2-2-2. Screening clones exhibiting cellulolytic activity by Congo red stain 20 2-2-3. Purification of the genetic material of clones exhibiting cellulolytic activity 21 2-4. SEQUENCING AND ANALYZED OF METAGENOMIC INSERTS 21 2-5. SUB-CLONING CELLULOLYTIC ACTIVITY GENE HTP5 INTO EXPRESSION PLASMID BY E.COLI STRAIN BL21 22 2-6. PRODUCTION AND PURIFICATION OF THE RECOMBINANT HTP5 22 2-6-1. Production of the recombinant HTP5 22 2-6-2. Quantity of protein concentration by Bradford dye-binding method 23 2-7. DETERMINATION OF THE MOLECULAR MASS OF HTP5 BY SDS-PAGE 24 2-7-1. Gels casting 24 2-7-1-1. Resolving gel (running gel or separation gel) 24 2-7-1-2. Stacker gel 25 2-7-2. SDS-PAGE analysis 25 2-7-3. PlusOne Coomassie tablets PhastGel Blue R-350 stain 26 2-7-4. Cellulolytic activity of HTP5 investigated by Zymography 27 2-7-4-1. Resolving gel (running gel or separation gel) 10% SDS-PAGE 27 2-7-4-2. Stacker gel 28 2-7-4-3. SDS-PAGE Zymography (Satoshi Nakamura, 1993) 28 2-7-5. Western blotting 29 2-7-5-1. Protein Electro transfer (Semi-dry transfer) 29 2-7-5-2. Blocking and Hybridization 31 2-7-5-3. Chemiluminescent Detection 31 2-8. PURIFICATION OF THE RECOMBINANT HTP5 32 2-8-1. Packing the Sepharose Fast Flow gels 32 2-8-2. Preparation the liquid chromatograpry and enzyme purification 33 2-9. DETERMINATION OF CATALYTIC ACTIVITY OF HTP5 34 2-9-1. Analysis of enzyme activity by Reducing Sugar Estimation by Dinitrosalicylic Acid (DNS) Method Carboxymethyl cellulose (CMC) assay for endo-1, 4-glucanase (T. K. GHOSE Biochemical Engineering Research Centre, Indian Institute of Technology, New Delhi-110016, India) 34 2-9-1-1. Investigation of the optimal reaction temperature for the crude extracted 34 2-9-1-2. Investigation of the optimal reaction pH value for the crude extracted 35 2-9-1-3. Construction of the standard curve for calculation 36 2-9-1-4. Unit calculation of the purified enzyme 37 2-9-1-5. Investigation of the optimal reaction temperature of the purified enzyme 37 2-9-1-6. Investigation of the optimal reaction pH value of the purified enzyme 38 2-9-1-7. Calculation of the enzyme specific activity 38 2-9-2. Enzymatic Assay of cellulase by p-nitrophenyl beta-D-cellobioside 39 2-9-2-1. Investigation of the optimal reaction temperature for the crude extracted 39 2-10. THE EFFECTS OF DIFFERENT CHEMICAL REAGENTS ON THE PURIFIED RECOMBINANT HTP5 40 2-11. THERMAL STABILITY STUDIES OF THE HTP5 40 2-12. SUBSTRATE SPECIFICITY AND KINETIC STUDIES OF THE HTP5 40 2-13. ESTIMATION OF DEFIBRILLATION ACTIVITY OF ENDOGLUCANASE 41 CHAPTER 3 RESULTS 42 3-1. ENVIRONMENTAL METAGENOMIC DNA LIBRARY CONSTRUCTION 42 3-2. SEQUENCE ANALYSIS OF SCREENED CELLULASE GENE 43 3-3. CONSTRUCTION, OVEREXPRESSION AND PURIFICATION OF RECOMBINANT HTP5 43 3-4. EFFECTS OF PH AND TEMPERATURE ON ENZYMATIC ACTIVITY AND STABILITY 44 3-5. ACTIVITY ANALYSIS OF PURIFIED HTP5 WITH VARIOUS SUBSTRATES 44 3-6. THE EFFECT OF METAL IONS AND CHEMICALS ON ENZYMATIC ACTIVITY 45 3-7. THE KINETIC PROPERTIES OF HTP-5 45 3-8. OTHER APPLICATIONS OF THE NOVEL CELLULASE HTP5 45 CHAPTER 4 DISCUSSIONS 47 4-1. ENVIRONMENTAL METAGENOMIC DNA LIBRARY CONSTRUCTION 47 4-2. GENERAL CONCEPTS OF CELLULASES HTP5 47 4-3. EFFECTS OF PH AND TEMPERATURE ON ENZYMATIC ACTIVITY AND STABILITY 47 4-4. THE EFFECT OF METAL IONS AND CHEMICALS ON ENZYMATIC ACTIVITY 48 4-5. ESTIMATION OF DEFIBRILLATION ACTIVITY OF ENDOGLUCANASE HTP5 BELONG TO GH 9 48 REFERENCES 69 APPENDIX 72 自述 79

    Banerjee, T., Barman, S. C. and Srivastava, R. K. (2011) Application of air pollution dispersion modeling for source-contribution assessment and model performance evaluation at integrated industrial estate-Pantnagar. Environmental Pollution 159, 865-875.
    Bayer, E. A., Belaich, J.-P., Shoham, Y. and Lamed, R. (2004) The Cellulosomes : Multienzyme Machines for Degradation of Plant Cell Wall Polysaccharides. Annual Review of Microbiology 58, 521-554.
    Bhat, M. K. (2000) Cellulases and related enzymes in biotechnology. Biotechnology Advances 18, 355-383.
    Bhat, M. K. and Bhat, S. (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances 15, 583-620.
    Brian C. King, M. K. D., Gary C. Bergstrom, Larry P. Walker, Donna M. Gibson (2009) An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnology and Bioengineering 102, 1033-1044.
    Carroll, A. and Somerville, C. (2009) Cellulosic Biofuels. Annual Review of Plant Biology 60, 165-182.
    Chen, F. and Dixon, R. A. (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nature biotechnology 25, 759-761.
    Din, N., Gilkes, N. R., Tekant, B., Miller, R. C., Warren, R. A. J. and Kilburn, D. G. (1991) Non-Hydrolytic Disruption of Cellulose Fibres by the Binding Domain of a Bacterial Cellulase. Nat Biotech 9, 1096-1099.
    Dogaris, I. V., George Kalogeris, Emmanuel Mamma, Diomi and Kekos, Dimitris (2009) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Industrial Crops and Products 29, 404-411.
    Ely Morag, E. A. B., and Raphael Lamed (1990) Relationship of Cellulosomal and Noncellulosomal Xylanases of Clostridium thermocellum to Cellulose-Degrading Enzymes. Journal of Bacteriology 172, 6098-6105.
    Hamilton, B. A. (2010) Biofuel feedstock logistics: recommendations for reserch and commerialization. biomass research and developement board, 1-52.
    Helena Azevedo, D. B., Artur Cavaco–Paulo (2000) Effects of agitation level on the adsorption, desorption, and activities on cotton fabrics of full length and core domains of EGV (Humicola insolens) and CenA (Cellulomonas fimi). Enzyme and Microbial Technology 27, 5.
    Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W. and Foust, T. D. (2007) Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science 315, 804-807.
    Jørgensen, H., Kristensen, J. B. and Felby, C. (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining 1, 119-134.
    Ji M. Hu, He Li, Li X. Cao, Pei C. Wu, Chen T. Zhang, Shul. Sang, Xiao Y. Zhang, Min J. Chen, Jia Q. Lu and Liu, A. Y. H. (2007) Molecular Cloning and Characterization of the Gene Encoding Cold-Active β-Galactosidase from a Psychrotrophic and Halotolerant Planococcus sp. L4. Journal of Agricultural and Food Chemistry 55, 2217-2224.
    Koga, J., Baba, Y., Shimonaka, A., Nishimura, T., Hanamura, S. and Kono, T. (2008) Purification and Characterization of a New Family 45 Endoglucanase, STCE1, from Staphylotrichum coccosporum and Its Overproduction in Humicola insolens. Applied and Environmental Microbiology 74, 4210-4217.
    Lee R Lynd, M. S. L., David Bransby, Bruce E Dale, Brian Davison, Richard Hamilton, Michael Himmel, Martin Keller, James D McMillan, John Sheehan & Charles E Wyman (2008) How biotech can transform biofuels. Nature biotechnology 26, 169-172.
    Lejeune, A., Colson, C. and Eveleigh, D. E. (1986) Cloning of an endoglucanase gene from Pseudomonas fluorescens var. cellulosa into Escherichia coli and Pseudomonas fluorescens. Journal of Industrial Microbiology & Biotechnology 1, 79-86.
    Martinez, D. B., Randy M. Henrissat, Bernard Saloheimo, Markku Arvas, Mikko Baker, Scott E. Chapman, Jarod Chertkov, Olga Coutinho, Pedro M. Cullen, Dan Danchin, Etienne G. J. Grigoriev, Igor V. Harris, Paul Jackson, Melissa Kubicek, Christian P. Han, Cliff S. Ho, Isaac Larrondo, Luis F. de Leon, Alfredo Lopez Magnuson, Jon K. Merino, Sandy Misra, Monica Nelson, Beth Putnam, Nicholas Robbertse, Barbara Salamov, Asaf A. Schmoll, Monika Terry, Astrid Thayer, Nina Westerholm-Parvinen, Ann Schoch, Conrad L. Yao, Jian Barbote, Ravi Nelson, Mary Anne Detter, Chris Bruce, David Kuske, Cheryl R. Xie, Gary Richardson, Paul Rokhsar, Daniel S. Lucas, Susan M. Rubin, Edward M. Dunn-Coleman, Nigel Ward, Michael and Brettin, Thomas S. (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Natur biotechnology 26, 553-560.
    Mehdi Dashtban, H. S., and Wensheng Qin (2009) Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives. International Journal of Biological Sciences 5, 18.
    Michelle R. Rondon, P. R. A., Alan D. Bettermann, Sean F. Brady, and Robert M. Goodman (2000) Cloning the Soil Metagenome a Strategy for Accessing the Genetic and Functional Diversity of Uncultured Microorganisms. Applied and environmental microbioloby 66, 2541–2547.
    Perrin, R. M. (2003) Analysis of Xyloglucan Fucosylation in Arabidopsis. Plant Physiology 132, 768-778.
    Satoshi Nakamura, K. W., Ryuichiro Nakai, Rikizo Aono, and Koki horikoshi (1993) Purification and Some Properties of an Alkaline Xylanase from Alkaliphilic Bacillus sp. Strain 41M-1. Applied and Environmental Microbiology 59, 2311-2316.
    Shimonaka, A., Murashima, K., Koga, J., Baba, Y., Nishimura, T., Kubota, H. and Kono, T. (2006) Amino Acid Regions of Family 45 Endoglucanases Involved in Cotton Defibrillation and in Resistance to Anionic Surfactants and Oxidizing Agents. Bioscience, Biotechnology, and Biochemistry 70, 2460-2466.
    Sommer, M. O. A. C., George M. and Dantas, Gautam (2010) A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion. Molecular Systems Biology 6.
    Stöcker, M. (2008) Biofuels and Biomass-To-Liquid Fuels in the Biorefinery: Catalytic Conversion of Lignocellulosic Biomass using Porous Materials. Angewandte Chemie International Edition 47, 9200-9211.
    Steele, H. L. J., Karl-Erich Daniel, Rolf and Streit, Wolfgang R. (2009) Advances in Recovery of Novel Biocatalysts from Metagenomes. Journal of Molecular Microbiology and Biotechnology 16, 25-37.
    Wilson, D. B. (2009) Cellulases and biofuels. Current Opinion in Biotechnology 20, 295-299.
    Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R. and Lee, Y. Y. (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresource Technology 96, 2026-2032.

    無法下載圖示 校內:2014-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE