| 研究生: |
陳鵬仁 Chen, Peng-Jen |
|---|---|
| 論文名稱: |
V型波板渠道內流場與熱傳特性的數值模擬 Numerical Simulation of Fluid Flow and Heat Transfer Characteristics in Channel with V Corrugated Plates |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 熱傳 、波形板 、紊流 、數值計算 |
| 外文關鍵詞: | Corrugated plate, Numerical calculation, Heat transfer, Turbulent flow |
| 相關次數: | 點閱:97 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文是以數值研究詳細地探討當流體流過上下皆為加熱V型波狀板壁面的渠道時所產生的流場及其熱傳特性。在數值計算的方法上,以控制體積法為基礎,配合有限差分法及冪次法則在非結構三角型網格上將各統御方程式離散成差分方程式,並且運用SIMPLE法來求解動量方程式中的壓力項與速度項結合問題。對於紊流運動行為及結構問題是以k-ε雙方程紊流模式來描述。
本文所研究的參數有:雷諾數(2000~5500)、V型波板壁面角度(θ=20度、40度、60度)、等熱通量(580W/m^2、830W/m^2、1090W/m^2)。
數值研究結果與Naphon(2007)的實驗數據經驗證相當吻合。V型波板壁面壁面角度(θ)及雷諾數對於渠道內的流場、溫度分佈、熱傳率皆有顯著的影響。當V型波板壁面壁面角度增加時,會使得壁面熱量較容易傳至中央流場,提高整體溫度及熱傳效率,但也提高流體流過渠道時的壓降;雷諾數增加會使得流體擾動更複雜,也會提高其熱傳效率。另外,以採用非平衡牆函數的數值計算在對高雷諾數或複雜流場的問題時,會比採用標準牆函數的結果有較高的準確度。
The detailed numerical study is carried out to investigate fluid flow and heat transfer characteristics in channel with heated V corrugated upper and lower plates. The governing equations are discredited by a Control-Volume-Based finite-difference method with power-law scheme on unstructured triangular grid, the coupling of velocity and the pressure terms of momentum equations are solved by SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm. And the well-known turbulence model is employed to describe the turbulent structure and behavior.
The parameters studied include Reynolds number (Re=2000~5500), angles of V corrugated plates (θ=20o、40o、60o), constant heat flux ( =580W/m2、830W/m2、1090W/m2).
The numerical results have been validated using the experimented data reported by Naphon(2007),and the good agreement has been found. The angles of V corrugated plates (θ) and the Reynolds number are demonstrated to significantly affect the fluid flow, temperature distribution, and heat transfer rate. Increasing the angles of V corrugated plates can make the wall heat transfers to the central flow easier, the whole temperature increases, the heat transfer performance becomes better, and higher pressure drop. Reynolds number increasing leads to the fluid flow more complex and heat transfer rate. In addition, the numerical calculations with non-equilibrium wall function have a better accuracy than with standard wall function for solving the high Reynolds number or complex flow problems.
1.Ciofalo, M., Collins, M.W., and Stasiek, J.A., “Flow and -27-Heat Transfer Predictions in Flow Passages of Air Preheaters:Assessment of Alternative Modeling Approaches,” Computer Simulations in Compact Heat Exchangers, 1998.
2.Ding, J., and Manglik, R.M., “Analytical Solutions for Laminar Fully Developed Flows in Double-Sine Shaped Ducts,” Heat and Mass Transfer, vol. 31, pp.269-277, 1996.
3.Fabbri, G., “Heat transfer optimization in corrugated wall channels,”Int. J. Heat Mass Trans, vol.43, pp.4299-4310, 2000.
4.Focke, W.W., and Knibbe, P.G., “Flow Visualization in Parallel-Plate Ducts with Corrugated Walls,” J. Fluid Mech., vol.165, pp.73-77, 1986.
5.Focke, W.W., Zacharirades, J., and Olivier, I., “The Effects of the Corrugation Inclination Angle on the Thermal-Hydraulic Performance of Plate Heat Exchanger,” Int. J. Heat and Mass Transfer, vol.28, No.8, pp. 1469-1479, 1985.
6.Heavner, R.L., Kumar, H., and Wannizrachi, A.S., “Performance of an Industrial Plate Heat Exchanger: Effect of Chevron Angle,” AICHE, Symp., vol.89, No.295, pp.65-70, 1993.
7.Jang, J.Y., and Lin, C.N., “A Numerical Analysis of Three-Dimensional Heat Transfer and Fluid Flow in Chevron Plate Channels,” ASHRAE Transactions: Symposia, Minnesota, pp.856-863, 2000.
8.Jayatilleke, C.L., “The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer,” Prog. Heat Mass Transfer, vol.1, pp.193-329, 1969.
9.Kim, K.Y., Kim, S.S., “Shape optimization of rib-roughened surface to enhance turbulent heat transfer,” Int. J. Heat Mass Transfer, vol.45, pp. 2719-2727, 2002.
10.Kim, S.-E., Choudhury D., “A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient,” Separated and Complex Flows, ASME FED Vol. 217, 1995.
11.Launder, B.E., and Spalding, D.B., “The Numerical Computation of Turbulent Flow,” Computer Method in Applied Mechanics and Engineering, vol.3, pp.269-289, 1972.
12.Marriott, J., “Where and How To Use Plate Heat Exchangers,” Chemical Engineering, vol.78, pp.127-134, 1971.
13.Mehrabian, M.A., and Poulter, R., “Hydrodynamics and Thermal Characteristics of Corrugated Channel: Computational Approach,” Applied Mathematical Modeling, vol.24, pp.343-364, 2000.
14.Paras, S.V., Kanaris, A.G., Mouza, A.A., Karabelas, A.J., “CFD Code Application to Flow Through Narrow Channels with Corrugated Walls,” CHISA, 15th International Congress of Chemical and Process Engineering, Prague, 2002.
15.Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York, McGraw-hill, 1980.
16.Ros, S., Jallut, C., Grillot, J.M., and Amblard, “A Transient-State Technique for the Heat Transfer Coefficient Measurement in a Corrugated Plate Heat Exchanger Channel Based on Frequency Response and Residence Time Distribution,” Int. J. Heat Mass Transfer, vol. 38, No. 7, pp.1317-1325, 1995.
17.Shah, R.K., and Focke, W.W., “Plate Heat Exchangers and Their Design Theory,” Heat Transfer Design, R.K. Shah, E.C. Subbarao, and R.A. Mashelkar, eds. Washington, D.C. Hemisphere Publishing Co., pp.227-254, 1988.
18.Webb, B.W., and Ramadhyani, S., “Conjugate heat transfer in a channel with staggered ribs,”Int. J. Heat Mass Transfer, vol.28, No.9, pp.1679-1687, 1985.
19.Webb, R., Principles of enhanced heat transfer, John Wiley & Sons, Inc,New York, 1994.
20.林佩芝,「幾何參數對板式熱交換器性能之影響」,交通大學碩士論文,民84。
21.黃皓杰,「紊流氣體流經平行渠道含連續粗糙面之流場和共軛熱傳之研究」,中原大學碩士論文,民92。
22.張嘉宏,「正弦截面曲線波形板流道熱傳係數的暫態液晶量測」,大葉大學碩士論文,民94。
23.魏嘉宏,「具加熱段水平渠道內流場與共軛熱傳之數值模擬」,成功大學碩士論文,民92。