| 研究生: |
劉奕廷 Liu, Yi-Ting |
|---|---|
| 論文名稱: |
台灣西部地區年流量指標之非定常性分析 Nonstationary analysis of annual flow indices in western Taiwan |
| 指導教授: |
蕭政宗
Shiau, Jenq-Tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 非定常性 、年流量指標 、GAMLSS 、水庫指數 |
| 外文關鍵詞: | Nonstationarity, Annual flow indices, GAMLSS, Reservoir index |
| 相關次數: | 點閱:77 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流量指標在防洪減災以及水資源管理上均為不可或缺的依據,然而鑒於全球氣候異常致使水文特性改變情況下,過往的定常性流量分析可能難以適用,非定常性分析遂成為現今學者聚焦之分析方法。本文利用位置、尺度與形狀參數之廣義加成模式(generalized additive model for location, scale, and shape, GAMLSS)進行非定常性流量分析,研究台灣西部地區三大流域,包含北部淡水河流域、中部濁水溪流域,以及南部高屏溪流域共18個流量站之10項年流量指標,分別為年總逕流量、年最大1日流量、年最小1日、7日、30日流量、Q5、Q25、Q50、Q75,以及Q95,探討其分別以時間及水庫指數(reservoir index)為共變數之最佳機率模式,並將以時間為共變數之分析結果與前人趨勢研究進行比較。結果顯示在18個流量站之10個年流量指標共180個項目中,gamma分布最多(54項),log-normal次之(53項),Weibull再次之(41項),三種分布佔全部指標之82.2%;此外,高達145個指標(80.6%)呈非定常性,其中又以年最小1日流量為最多,所有流量站(18站)皆屬之,而年最大1日流量為最少,僅有一半的流量站(9站),顯示在較低流量具較強烈的非定常性變化。另外,以水庫指數為共變數分析結果顯示在秀朗站年最大1日流量及Q5指標中,相較以時間為共變數的模擬結果好,其他指標則仍是時間趨勢表現較好;霞雲站以及五堵站所有指標皆是以時間為共變數表現較佳。與前人趨勢研究比較結果顯示,以GAMLSS模式模擬成果能夠捕捉其趨勢性外,能夠詳細描述局部變化,提供更多資訊。
Flow indices are important and robust indicators to support the decisions for water resources management and flood control. Due to the climate change and rapid urbanization, the assumption of stationary condition used in water resources planning and hydraulic design may not be applicable. In this study, the generalized additive model for location, scale, and shape (GAMLSS) is used to model the nonstationarity of 10 annual flow indices of three main river basins in western Taiwan (Dan-Shui, Zhuo-Shui, Kao-Ping), which include total runoff, maximum 1-day streamflow, minimum 1-, 7-, 30-day streamflow, Q5, Q25, Q50, Q75, and Q95.The results indicate that (1) the best probability model for fitting flow indices (180 models in total) are the gamma distribution (54 models), log-normal distribution (53 models), and Weibull distribution (41 models). Among these models, 145 models show nonstationarity. (2) The minimum 1-day streamflow of all stations exhibits nonstationarity. On the other hand, only half stations show nonstationarity in the maximum 1-day streamflow. (3) The model incorporating the reservoir index as the covariate shows better performance than the model using the time as covariate for the maximum 1-day streamflow and Q5 indices. (4) The GAMLSS framework provides not only the trend of hydro-climate series, but also point out the information of distributional changes.
1. Akaike, H., A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19: 716-723, 1974.
2. Bazrafshan J., Hejabi S., A nonstationary reconnaissance drought index(NRDI) for drought monitoring in a changing climate. Water Resources Management, 32: 2611-2624, 2018.
3. Brutsaert W., Parlange B.M., Hydrologic cycle explains the evaporation paradox, Nature, 396, 1998.
4. Burnham P.K., David R.A., Huyvaert P. K., AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons, Behavioral Ecology Sociobiology, 65: 23-35, 2011
5. Bozdogan H., Model selection and Akaike’s information criterion(AIC): the general theory and its analytical extensions, Psychometrika, 52(3): 345-370, 1987.
6. Debele S.E., Bogdanowicz E., Strupczewski W.G., A comparison of three approaches to nonstationary flood frequency analysis, Acta Geophysica, 65: 863-883, 2017a.
7. Debele S.E., Bogdanowicz E., Strupczewski W.G., Around and about an application of the GAMLSS package to nonstationary flood frequency analysis, Acta Geophysica. 65: 885-892, 2017b.
8. Du T., Xiong L., Xu C.-Y., Gippel C.J., Guo S., Liu P., Return period and risk analysis of nonstationary low-flow series under climate change, Journal of Hydrology, 527: 234-250, 2015.
9. Francis M.M., The use of the Akaike Information Criterion in the identification, of an optimum flood frequency model, Hydrological Sciences Journal, 39(3): 235-244, 1994.
10. Harrell F.E., amd Davis D.E., A new distribution-free quantile estimator, Biometrika, 69(3): 635-640, 1982.
11. Hastie T.J., Tibshirani R.J:, Generalized additive models. Chapman and Hall, London, 1990.
12. Hsu H.-H., Chou C., Wu, Y.-C., Lu M.-M., Chen C.-T., Chen Y.-M., Climate change in Taiwan: Scientific Report 2011(Summary). National Science Council, Taipei, Taiwan, ROC, 67, 2011.
13. Hung C.-W., Kao P.-K., Weakening of the winter monsoon and abrupt increase of winter rainfalls over northern Taiwan and southern China in the early 1980s, Journal of Climate, 23: 2357-2367, 2010.
14. Jiang C., Xiong, L., Xu, C.-Y, Guo, S., Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula, Hydrological Processes, 29: 1521-1534, 2015.
15. Kendall M., Rank correlation method, Griffin, London, 1975.
16. Kendall M., Stuart A., Ord J.K., Design and Analysis, and Time Series, 4th ed, The Advanced Theory of Statistics, 3:780, 1983.
17. Koutsoyiannis D., Nonstationarity versus scaling in hydrology, Journal of Hydrology, 324:239-254, 2006.
18. Koutsoyiannis D., Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water Resources Association, 47(3):481-495, 2011.
19. Kullback S., Leibler R.A., On information and sufficiency, Annual of Mathematical Statistics, 22(1): 79-86, 1951.
20. Li J., Tan S., Nonstationary flood frequency analysis for annual flood peak series, adopting climate indices and check dam indices as covariates, Water Resources Management, 29:5533-5550, 2015.
21. Li J., Liu X., Chen F., Evalution of nonstationary in annual maximum flood series and the associations with large-scale climate patterns and human activities, Water Resources Management, 29:1653-1668, 2015.
22. López J., Francés F., Nonstationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates, Hydrology and Earth System Sciences, 17: 3189-3203, 2013.
23. Mann H.B., Non-parametric test against trend, Econometrica, 13: 245-259, 1945.
24. Milly P.C.D., Betancourt J., Falkenmark M., Hirsch M. R., Kundzewicz W. Z., Lettenmaier P. D. ,Stouffer J. R., Stationarity is dead: whither water management?, Science, 319: 573-574, 2008.
25. Nelder J. A., Wedderburn R.W.M., Generalized Linear Models, Journal of the Royal Statistical Society. Series A(General), 135(3): 370-384, 1972.
26. Olsen J., Lambert J.H., Haimes Y., Risk of extreme events under nonstationary conditions, Risk Analysis 18(4):497-510, 1998.
27. Rigby A. R., Stasinopoulos D. M., Generalized additive models for location, scale and shape, Journal of the Royal Statistical Society: Series C (Applied Statistics), 54:507–554, 2005
28. Salas D., Obeysekera J., Revisting the concepts of return period and risk for nonstationary hydrologic extreme events, Journal of Hydrologic Engineering, 19(3):554-568, 2014
29. Smakhtin V. U., Low flow hydrology: A review, Journal of Hydrology, 204(3-4): 147-186, 2001.
30. Stasinopoulos D. M., Rigby A. R., Heller Z. G., Voudouris V., Bastiani D. F., Flexible Regression and Smoothing, Using GAMLSS in R, Taylor and Francis Group, 2017.
31. van Buuren S., Fredriks M., Worm plot: a simple diagnostic device for modeling growth reference curves, Statistics in Medicine, 20: 1259–1277, 2001.
32. Villarini G.,Smith J. A., Serinaldi F., Bales J., Bates D. P., Krajewski F. W., Flood frequency analysis for nonstationary annual peak records in an urban drainage basin, Advances in Water Resources, 32: 1255-1266, 2009.
33. Villarini G., Smith J.A., Napolitano F, Nonstationary modeling of a long record of rainfall and temperature over Rome, Advances in Water Resources, 33(10): 1256–1267, 2010.
34. Vogel M. R., Fennessey M. N., Flow-duration curves I: New interpretation and confidence intervals, Journal of Water Resources Planning and Management, 120(4): 485-504, 1994.
35. Wang H., Killick R., Fu X., Distributional change of monthly precipitation due to climate change: examination of dataset in southeastern United States, Hydrological Process, 28: 5212-5219, 2014.
36. Yeh C.-F., Yeh H.-F., Lee C.-H., Mann-Kendall test and Theil-Sen estimator for long term spatial and temporal trends of streamflow in Taiwan, Journal of Chinese Soil and Water Conservation, 47(2): 73-83, 2016.
37. Yeh C.-F., Wang J., Yeh H.-F., Lee C.-H, Spatial and temporal stream flow trends in northern Taiwan, Water, 7: 634-651, 2015.
38. Yu P.S., Yang T.C., Kuo C.C., Evaluating long-term trends in annual and seasonal precipitation in Taiwan, Water Resources Management, 20: 1007-1023, 2006.
39. Zhang D.-D., Yan D.-H., Wang Y.-C., Lu F., Liu S.-H., GAMLSS-based nonstationary modeling of extreme precipitation in Beijing–Tianjin–Hebei region of China, Natural Hazards 77: 1037–1053, 2015a.
40. Zhang Q., Gu X., Singh P. V., Xiao M., Chen X., Evaluation of flood frequency under nonstationary resulting from climate change indices and reservoir indices in the East River basin, Journal of Hydrology, 527: 565-575, 2015b.
41. 林 敬大・立川 康人・椎葉 充晴,時変母数による非定常水文頻度解析手法のモデル選択に関する考察土木学会論文B1(水文学),71(1): 28-42,2015。
42. 李光敦,水文學,五南圖書,2002。
43. 王如意、易任,應用水文學,國立編譯館,1982。
44. 張雅閔、蕭正宗,台灣地區不同延時低流量最佳分布之探討,農業工程學報,第54卷第2期,第36-51頁,2008。
45. 巫佩勳、蕭政宗,以GAMLSS探討台灣地區年降雨指標機率分布之非定常特性,國立成功大學碩士論文,2019。