| 研究生: |
劉瑜茹 Liu, Yu-Ju |
|---|---|
| 論文名稱: |
利用自產過氧化氫與氧氣之可降解奈米材料對原位肝腫瘤進行非藉由外界光源激發之光動力治療及過量鈣離子之協同治療 Engineering H2O2 and O2 Self-Supplying Degradable Nanoreactor to Conduct Synergistic External Light-Free Photodynamic and Calcium-Overloaded Therapy in Orthortopic Hepatic Tumor |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 非藉由外界光源激發光動力治療 、自體發光系統 、自產過氧化氫與氧氣系統 、過量鈣離子現象 、過氧化鈣 |
| 外文關鍵詞: | external light-free photodynamic therapy, self-illuminating systems, H2O2/O2 self-supplying system, intracellular calcium-overload, calcium peroxide |
| 相關次數: | 點閱:102 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來治療癌症相關之研究蔚為風潮,許多新穎的治療方法被提出,如光動力治療。但光動力治療最常被詬病的問題就是外界光源穿透度的問題。除此之外,如何解決腫瘤微環境在治療過程中所導致的負面影響也是許多學者一直以來想要克服的問題。
本研究中我們設計一種材料以中孔洞二氧化矽 (mSiO2) 作為載體,在其孔洞與表面先包覆 CaO2 後再搭載化學放光物質 CPPO 和光動力治療之光敏劑 Ce6,最後包覆硬脂酸 (Stearic Acid, SA) 包覆層。該材料於細胞內可與水進行反應產生 H2O2、O2 與 Ca2+。再利用 H2O2 與 CPPO反應產生之化學能與 Ce6 之間之能量轉移,將 O2 轉變成 1O2 後誘發細胞凋亡。同時,由材料產生之過量 Ca2+ 亦可造成細胞內粒線體功能異常,導致過量 Ca2+ 誘發之細胞凋亡。利用以上反應機制,該材料結合非藉由外界光源激發之光動力治療、自產過氧化氫與氧氣系統以及細胞內過量鈣離子等方法,針對原位肝腫瘤進行協同治療。
Photodynamic therapy (PDT) has been chosen as a practical and non-invasive cancer treatment that is commonly used in various diseases. However, the tissue penetration limitation of external light, insufficient H2O2, and hypoxia limits the efficacy of PDT significantly. In this study, we design a simple nanosystem that combines CPPO-H2O2 self-illuminating system that can overcome the shortcoming of external light source penetration, and CaO2 self-supplying H2O2 / O2 system that can generate H2O2 and O2 under an acidic environment to supply H2O2 and relieve the hypoxia in the tumor cell. Moreover, CaO2 can release Ca2+ and cause calcium-overload to the cancer cells. The material conducts both treatments including external light-free PDT and calcium-overloaded-mediated therapy to enhance the comprehensive therapeutic effect.
1. Lucky, S. S.; Soo, K. C.; Zhang, Y., Nanoparticles in photodynamic therapy. Chem Rev 2015, 115 (4), 1990-2042.
2. Abrahamse, H.; Kruger, C. A.; Kadanyo, S.; Mishra, A., Nanoparticles for Advanced Photodynamic Therapy of Cancer. Photomed Laser Surg 2017, 35 (11), 581-588.
3. Zhang, E.; Huang, Y.; Wang, S., Self-luminescent photodynamic therapy and pathogen detection for infectious diseases. Drug Deliv Transl Res 2021, 11 (4), 1451-1455.
4. Calixto, G. M.; Bernegossi, J.; de Freitas, L. M.; Fontana, C. R.; Chorilli, M., Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules 2016, 21 (3), 342.
5. Felsher, D. W., Cancer revoked: oncogenes as therapeutic targets. Nat Rev Cancer 2003, 3 (5), 375-80.
6. MEYER-BETZ, F., Untersuchungcn iiber die biologische (photodynamische) Wirkung des Hiimatoporphyriris und anderer Derirate des Blut-und Gallenfarbstoffs. Deutsches Arch. f. klin, 476-503.
7. Schwartz, S.; Absolon, K.; Vermund, H., Some relationships of porphyrins, X-rays and tumors. Univ. Minn. Med. Bull 1955, 27 (1).
8. Diamond, I.; Mcdonagh, A.; Wilson, C.; Granelli, S.; Nielsen, S.; Jaenicke, R., Photodynamic therapy of malignant tumours. The Lancet 1972, 300 (7788), 1175-1177.
9. Dougherty, T. J.; Grindey, G.; Fiel, R.; Weishaupt, K. R.; Boyle, D., Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J. Natl. Cancer Inst. 1975, 55 (1), 115-121.
10. Kelly, J.; Snell, M.; Berenbaum, M., Photodynamic destruction of human bladder carcinoma. Br. J. Cancer 1975, 31 (2), 237-244.
11. Kelly, J.; Snell, M., Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder. The Journal of urology 1976, 115 (2), 150-151.
12. Fan, W.; Huang, P.; Chen, X., Overcoming the Achilles' heel of photodynamic therapy. Chem Soc Rev 2016, 45 (23), 6488-6519.
13. Eckl, D. B.; Dengler, L.; Nemmert, M.; Eichner, A.; Baumler, W.; Huber, H., A Closer Look at Dark Toxicity of the Photosensitizer TMPyP in Bacteria. Photochem Photobiol 2018, 94 (1), 165-172.
14. Ormond, A. B.; Freeman, H. S., Dye Sensitizers for Photodynamic Therapy. Materials (Basel) 2013, 6 (3), 817-840.
15. Mew, D.; Wat, C.-K.; Towers, G.; Levy, J., Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. The Journal of Immunology 1983, 130 (3), 1473-1477.
16. Allison, B.; Pritchard, P.; Levy, J., Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivative. Br. J. Cancer 1994, 69 (5), 833-839.
17. Konan, Y. N.; Gurny, R.; Allémann, E., State of the art in the delivery of photosensitizers for photodynamic therapy. Photochem Photobiol B: Biology 2002, 66 (2), 89-106.
18. Nanashima, A.; Nagayasu, T., Current status of photodynamic therapy in digestive tract carcinoma in Japan. Int J Mol Sci 2015, 16 (2), 3434-40.
19. Yano, T.; Muto, M.; Yoshimura, K.; Niimi, M.; Ezoe, Y.; Yoda, Y.; Yamamoto, Y.; Nishisaki, H.; Higashino, K.; Iishi, H., Phase I study of photodynamic therapy using talaporfin sodium and diode laser for local failure after chemoradiotherapy for esophageal cancer. Radiat Oncol 2012, 7, 113.
20. Yano, T.; Muto, M.; Minashi, K.; Iwasaki, J.; Kojima, T.; Fuse, N.; Doi, T.; Kaneko, K.; Ohtsu, A., Photodynamic therapy as salvage treatment for local failure after chemoradiotherapy in patients with esophageal squamous cell carcinoma: a phase II study. Int J Cancer 2012, 131 (5), 1228-34.
21. Shah, P. M.; Gerdes, H., Endoscopic options for early stage esophageal cancer. J Gastrointest Oncol 2015, 6 (1), 20-30.
22. Green, B.; Cobb, A. R.; Hopper, C., Photodynamic therapy in the management of lesions of the head and neck. Br J Oral Maxillofac Surg 2013, 51 (4), 283-7.
23. Simone, C. B., 2nd; Cengel, K. A., Photodynamic therapy for lung cancer and malignant pleural mesothelioma. Semin Oncol 2014, 41 (6), 820-30.
24. Fayter, D.; Corbett, M.; Heirs, M.; Fox, D.; Eastwood, A., A systematic review of photodynamic therapy in the treatment of pre-cancerous skin conditions, Barrett’s oesophagus and cancers of the biliary tract, brain, head and neck, lung, oesophagus and skin. 2010, 14, 37.
25. Gao, F.; Bai, Y.; Ma, S. R.; Liu, F.; Li, Z. S., Systematic review: photodynamic therapy for unresectable cholangiocarcinoma. J Hepatobiliary Pancreat Sci 2010, 17 (2), 125-31.
26. Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B. C.; Golab, J., Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011, 61 (4), 250-81.
27. Braathen, L. R.; Szeimies, R. M.; Basset-Seguin, N.; Bissonnette, R.; Foley, P.; Pariser, D.; Roelandts, R.; Wennberg, A. M.; Morton, C. A.; International Society for Photodynamic Therapy in, D., Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. International Society for Photodynamic Therapy in Dermatology, 2005. J Am Acad Dermatol 2007, 56 (1), 125-43.
28. Biel, M. A., Photodynamic therapy and the treatment of head and neck neoplasia. The Laryngoscope 1998, 108 (9), 1259-68.
29. Waidelich, R.; Beyer, W.; Knchel, R.; Stepp, H.; Baumgartner, R.; Schrder, J.; Hofstetter, A.; Kriegmair, M., Whole bladder photodynamic therapy with 5-aminolevulinic acid using a white light source. Urology 2003, 61 (2), 332-337.
30. Hayata, Y.; Kato, H.; Konaka, C.; Ono, J.; Takizawa, N., Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest 1982, 81 (3), 269-77.
31. Usuda, J.; Ichinose, S.; Ishizumi, T.; Hayashi, H.; Ohtani, K.; Maehara, S.; Ono, S.; Honda, H.; Kajiwara, N.; Uchida, O.; Tsutsui, H.; Ohira, T.; Kato, H.; Ikeda, N., Outcome of photodynamic therapy using NPe6 for bronchogenic carcinomas in central airways >1.0 cm in diameter. Clin Cancer Res 2010, 16 (7), 2198-204.
32. Perria, C.; Capuzzo, T.; Cavagnaro, G.; Datti, R.; Francaviglia, N.; Rivano, C.; Tercero, V. E., Fast attempts at the photodynamic treatment of human gliomas. J Neurosurg Sci 1980, 24 (3-4), 119-29.
33. Muller, P. J.; Wilson, B. C., Photodynamic therapy of brain tumors--a work in progress. Lasers Surg Med 2006, 38 (5), 384-9.
34. Zhang, Y.; Hao, Y.; Chen, S.; Xu, M., Photodynamic Therapy of Cancers With Internal Light Sources: Chemiluminescence, Bioluminescence, and Cerenkov Radiation. Front Chem 2020, 8, 770.
35. Sivasubramanian, M.; Chuang, Y. C.; Lo, L. W., Evolution of Nanoparticle-Mediated Photodynamic Therapy: From Superficial to Deep-Seated Cancers. Molecules 2019, 24 (3).
36. Brown, J. M.; Wilson, W. R., Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004, 4 (6), 437-47.
37. Wei, F.; Rees, T. W.; Liao, X.; Ji, L.; Chao, H., Oxygen self-sufficient photodynamic therapy. Coord Chem Rev 2021, 432.
38. Brown, S. B.; Brown, E. A.; Walker, I., The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004, 5 (8), 497-508.
39. Blum, N. T.; Zhang, Y.; Qu, J.; Lin, J.; Huang, P., Recent Advances in Self-Exciting Photodynamic Therapy. Front Bioeng Biotechnol 2020, 8, 594491.
40. Yang, M.; Huang, J.; Fan, J.; Du, J.; Pu, K.; Peng, X., Chemiluminescence for bioimaging and therapeutics: recent advances and challenges. Chem Soc Rev 2020, 49 (19), 6800-6815.
41. Gill, R. K.; Mitchell, G. S.; Cherry, S. R., Computed Cerenkov luminescence yields for radionuclides used in biology and medicine. Phys Med Biol 2015, 60 (11), 4263-80.
42. Jones, G. A.; Bradshaw, D. S., Resonance Energy Transfer: From Fundamental Theory to Recent Applications. Frontiers in Physics 2019, 7.
43. Yan, Y.; Wang, X.-y.; Hai, X.; Song, W.; Ding, C.; Cao, J.; Bi, S., Chemiluminescence resonance energy transfer: From mechanisms to analytical applications. TrAC Trends Analyt Chem 2020, 123.
44. Chen, H.; Gao, Q.; Li, J.; Lin, J.-M., Graphene materials-based chemiluminescence for sensing. J. Photochem. Photobiol. C: Photochemistry Reviews 2016, 27, 54-71.
45. Song, H.; Su, Y.; Zhang, L.; Lv, Y., Quantum dots-based chemiluminescence probes: an overview. Luminescence 2019, 34 (6), 530-543.
46. Kang, H.; Buchman, J. T.; Rodriguez, R. S.; Ring, H. L.; He, J.; Bantz, K. C.; Haynes, C. L., Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chem Rev 2019, 119 (1), 664-699.
47. Li, J.; Pu, K., Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 2019, 48 (1), 38-71.
48. Fang, L.; Hu, Q.; Jiang, K.; Zhang, X.; Li, B.; Cui, Y.; Yang, Y.; Qian, G., An inner light integrated metal-organic framework photodynamic therapy system for effective elimination of deep-seated tumor cells. J Solid State Chem 2019, 276, 205-209.
49. Chen, H.; Li, H.; Lin, J. M., Determination of ammonia in water based on chemiluminescence resonance energy transfer between peroxymonocarbonate and branched NaYF4:Yb3+/Er3+ nanoparticles. Anal Chem 2012, 84 (20), 8871-9.
50. Bloesser, F. R.; Walden, S. L.; Irshadeen, I. M.; Chambers, L. C.; Barner-Kowollik, C., Chemiluminescent self-reported unfolding of single-chain nanoparticles. Chem Commun (Camb) 2021, 57 (42), 5203-5206.
51. He, T.; Wang, G. N.; Liu, J. X.; Zhao, W. L.; Huang, J. J.; Xu, M. X.; Wang, J. P.; Liu, J., Dummy molecularly imprinted polymer based microplate chemiluminescence sensor for one-step detection of Sudan dyes in egg. Food Chem 2019, 288, 347-353.
52. Zhen, X.; Zhang, C.; Xie, C.; Miao, Q.; Lim, K. L.; Pu, K., Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive In Vivo Imaging of Reactive Oxygen Species. ACS Nano 2016, 10 (6), 6400-9.
53. Shu, J.; Qiu, Z.; Zhou, Q.; Lin, Y.; Lu, M.; Tang, D., Enzymatic Oxydate-Triggered Self-Illuminated Photoelectrochemical Sensing Platform for Portable Immunoassay Using Digital Multimeter. Anal Chem 2016, 88 (5), 2958-66.
54. Yu, Z.; Zhou, P.; Pan, W.; Li, N.; Tang, B., A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat Commun 2018, 9 (1), 5044.
55. Cheng, Y.; Cheng, H.; Jiang, C.; Qiu, X.; Wang, K.; Huan, W.; Yuan, A.; Wu, J.; Hu, Y., Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat Commun 2015, 6, 8785.
56. Wu, M.; Wu, L.; Li, J.; Zhang, D.; Lan, S.; Zhang, X.; Lin, X.; Liu, G.; Liu, X.; Liu, J., Self-Luminescing Theranostic Nanoreactors with Intraparticle Relayed Energy Transfer for Tumor Microenvironment Activated Imaging and Photodynamic Therapy. Theranostics 2019, 9 (1), 20-33.
57. Xu, X.; An, H.; Zhang, D.; Tao, H.; Dou, Y.; Li, X.; Huang, J.; Zhang, J., A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Science Advances 2019, 5 (1), eaat2953.
58. Song, X.; Xu, J.; Liang, C.; Chao, Y.; Jin, Q.; Wang, C.; Chen, M.; Liu, Z., Self-Supplied Tumor Oxygenation through Separated Liposomal Delivery of H2O2 and Catalase for Enhanced Radio-Immunotherapy of Cancer. Nano Lett 2018, 18 (10), 6360-6368.
59. Huo, M.; Wang, L.; Chen, Y.; Shi, J., Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat Commun 2017, 8 (1), 357.
60. Lin, T.; Zhao, X.; Zhao, S.; Yu, H.; Cao, W.; Chen, W.; Wei, H.; Guo, H., O2-generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics 2018, 8 (4), 990-1004.
61. Song, X.; Feng, L.; Liang, C.; Yang, K.; Liu, Z., Ultrasound Triggered Tumor Oxygenation with Oxygen-Shuttle Nanoperfluorocarbon to Overcome Hypoxia-Associated Resistance in Cancer Therapies. Nano Lett 2016, 16 (10), 6145-6153.
62. He, J.; Fu, L. H.; Qi, C.; Lin, J.; Huang, P., Metal peroxides for cancer treatment. Bioact Mater 2021, 6 (9), 2698-2710.
63. Zhang, M.; Song, R.; Liu, Y.; Yi, Z.; Meng, X.; Zhang, J.; Tang, Z.; Yao, Z.; Liu, Y.; Liu, X.; Bu, W., Calcium-Overload-Mediated Tumor Therapy by Calcium Peroxide Nanoparticles. Chem 2019, 5 (8), 2171-2182.
64. Zhang, M.; Shen, B.; Song, R.; Wang, H.; Lv, B.; Meng, X.; Liu, Y.; Liu, Y.; Zheng, X.; Su, W.; Zuo, C.; Bu, W., Radiation-assisted metal ion interference tumor therapy by barium peroxide-based nanoparticles. Materials Horizons 2019, 6 (5), 1034-1040.
65. Lin, L. S.; Wang, J. F.; Song, J.; Liu, Y.; Zhu, G.; Dai, Y.; Shen, Z.; Tian, R.; Song, J.; Wang, Z.; Tang, W.; Yu, G.; Zhou, Z.; Yang, Z.; Huang, T.; Niu, G.; Yang, H. H.; Chen, Z. Y.; Chen, X., Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics 2019, 9 (24), 7200-7209.
66. Tang, Z. M.; Liu, Y. Y.; Ni, D. L.; Zhou, J. J.; Zhang, M.; Zhao, P. R.; Lv, B.; Wang, H.; Jin, D. Y.; Bu, W. B., Biodegradable Nanoprodrugs: "Delivering" ROS to Cancer Cells for Molecular Dynamic Therapy. Adv Mater 2020, 32 (4), e1904011.
67. Gao, S.; Jin, Y.; Ge, K.; Li, Z.; Liu, H.; Dai, X.; Zhang, Y.; Chen, S.; Liang, X.; Zhang, J., Self-Supply of O2 and H2O2 by a Nanocatalytic Medicine to Enhance Combined Chemo/Chemodynamic Therapy. Adv Sci (Weinh) 2019, 6 (24), 1902137.
68. Wu, D.; Zhu, Z. Q.; Tang, H. X.; Shi, Z. E.; Kang, J.; Liu, Q.; Qi, J., Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer. Theranostics 2020, 10 (21), 9808-9829.
69. Shen, J.; Yu, H.; Shu, Y.; Ma, M.; Chen, H., A Robust ROS Generation Strategy for Enhanced Chemodynamic/Photodynamic Therapy via H2O2/O2 Self‐Supply and Ca2+ Overloading. Adv. Funct. Mater. 2021, 31 (50).
70. Liu, C.; Cao, Y.; Cheng, Y.; Wang, D.; Xu, T.; Su, L.; Zhang, X.; Dong, H., An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat Commun 2020, 11 (1), 1735.
71. Liu, L. H.; Zhang, Y. H.; Qiu, W. X.; Zhang, L.; Gao, F.; Li, B.; Xu, L.; Fan, J. X.; Li, Z. H.; Zhang, X. Z., Dual-Stage Light Amplified Photodynamic Therapy against Hypoxic Tumor Based on an O2 Self-Sufficient Nanoplatform. Small 2017, 13 (37).
72. Yu, Q.; Huang, T.; Liu, C.; Zhao, M.; Xie, M.; Li, G.; Liu, S.; Huang, W.; Zhao, Q., Oxygen self-sufficient NIR-activatable liposomes for tumor hypoxia regulation and photodynamic therapy. Chem Sci 2019, 10 (39), 9091-9098.
73. Zhao, R.; Wang, B.; Yang, X.; Xiao, Y.; Wang, X.; Shao, C.; Tang, R., A Drug-Free Tumor Therapy Strategy: Cancer-Cell-Targeting Calcification. Angew Chem Int Ed Engl 2016, 55 (17), 5225-9.
74. Rui, X.; Yang, Y.; Wu, J.; Chen, J.; Chen, Q.; Ren, R.; Zhang, Q.; Hu, Y.; Yin, D., Multi-path tumor inhibition via the interactive effects between tumor microenvironment and an oxygen self-supplying delivery system for a photosensitizer. Photodiagnosis Photodyn Ther 2020, 29, 101642.
75. Kong, H.; Chu, Q.; Fang, C.; Cao, G.; Han, G.; Li, X., Cu-Ferrocene-Functionalized CaO2 Nanoparticles to Enable Tumor-Specific Synergistic Therapy with GSH Depletion and Calcium Overload. Adv Sci (Weinh) 2021, 8 (14), e2100241.
76. Okitsu, K.; Iwatani, M.; Nanzai, B.; Nishimura, R.; Maeda, Y., Sonochemical reduction of permanganate to manganese dioxide: the effects of H2O2 formed in the sonolysis of water on the rates of reduction. Ultrason Sonochem 2009, 16 (3), 387-91.
77. Lee, Y.; Choi, K. H.; Park, K. M.; Lee, J. M.; Park, B. J.; Park, K. D., In Situ Forming and H2O2-Releasing Hydrogels for Treatment of Drug-Resistant Bacterial Infections. ACS Appl Mater Interfaces 2017, 9 (20), 16890-16899.
78. Park, S.; Park, K. M., Hyperbaric oxygen-generating hydrogels. Biomaterials 2018, 182, 234-244.
79. Andrew Mills, Optical Oxygen Sensors Utilising the Luminescence of Platinum Metals Complexes. Platinum Metals Rev., 1997, 41 (3), 115.
80. Entradas, T.; Waldron, S.; Volk, M., The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J Photochem Photobiol B 2020, 204, 111787.
81. Mihajlović, S. R.; Vučinić, D. R.; Sekulić, Ž. T.; Milićević, S. Z.; Kolonja, B. M., Mechanism of stearic acid adsorption to calcite. Powder Technol. 2013, 245, 208-216.
82. Nguyen, D. M.; Vu, T. N.; Nguyen, T. M. L.; Nguyen, T. D.; Thuc, C. N. H.; Bui, Q. B.; Colin, J.; Perre, P., Synergistic Influences of Stearic Acid Coating and Recycled PET Microfibers on the Enhanced Properties of Composite Materials. Materials (Basel) 2020, 13 (6).
83. Paul, S.; Selvam, S.; Heng, P. W.; Chan, L. W., Elucidation of monomerization effect of PVP on chlorin e6 aggregates by spectroscopic, chemometric, thermodynamic and molecular simulation studies. J Fluoresc 2013, 23 (5), 1065-76.
84. Zheng, Y.; Shen, X., H2O2 directly activates inositol 1,4,5-trisphosphate receptors in endothelial cells. Redox Rep 2005, 10 (1), 29-36.
85. Gorlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O., Calcium and ROS: A mutual interplay. Redox Biol 2015, 6, 260-271.
86. Castro, J.; Bittner, C. X.; Humeres, A.; Montecinos, V. P.; Vera, J. C.; Barros, L. F., A cytosolic source of calcium unveiled by hydrogen peroxide with relevance for epithelial cell death. Cell Death Differ 2004, 11 (4), 468-78.
87. Krumova, K.; Cosa, G., Chapter 1 Overview of Reactive Oxygen Species. In Singlet Oxygen: Applications in Biosciences and Nanosciences, Volume 1, The Royal Society of Chemistry: 2016; Vol. 1, pp 1-21.
88. Bayir, H., Reactive oxygen species. Crit Care Med 2005, 33 (12 Suppl), S498-501.
89. KUO, L. J.; YANG, L.-X., γ-H2AX - A Novel Biomarker for DNA Double-strand Breaks. In Vivo 2008, 22 (3), 305-309.