| 研究生: |
羅舜隆 Low, Soon-Long |
|---|---|
| 論文名稱: |
以氧化鈰/氧化鋅催化於溫和條件下進行甘油直接羰化法製備有機碳酸酯之研究 Study on Catalytic Carbonylation of Glycerol to Organic Carbonates over Cerium Oxide/Zinc Oxide |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 氧化鈰/氧化鋅 、甘油 、直接碳化法 、甘油碳酸酯 、甘油醋酸酯 、除水劑 |
| 外文關鍵詞: | Cerium oxide/zinc oxide, glycerol, direct carbonylation, glycerol carbonate, glycerol acetate, dehydration agent |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著18世紀工業革命的到來,促使機械代替人力,人機械的使用需要大量的能源,化石能源為主要的能源之用。而20世紀末的三次石油危機打響了能源危機的警鐘,各國紛紛推廣可再生能源取代不可再生能源。生質柴油為一種具有潛力的可再生能源,他是一種生物可降解性的能源,且對環境友善,故各國推出一系列政策鼓勵開發生質能源。生質柴油的快速發展促使其主要副產品甘油出現了供過於求的現象,尋求一種能將甘油轉化為高附加價值商品是當今迫切需要解決的課題。而其中甘油的衍生品甘油碳酸酯具有廣泛的應用,本實驗嘗試使用甘油藉由直接羰化法合成甘油碳酸酯以達到甘油高值化。
本實驗使用了水熱合成及市售氧化鋅作為擔體,使用六水合硝酸鈰作為前驅物以濕式含浸法於表面擔載氧化鈰,形成氧化鈰/氧化鋅之觸媒,並藉由XRD,SEM,ICP等鑑定觸媒之性質。觸媒應用於甘油直接羰化法反應中並探討影響甘油直接羰化法之因素。
經由實驗結果顯示,以氧化鈰/氧化鋅重量比為10:90可得最佳之產物產率 15 %,且隨著反應時間加長,產物產率提高,但是隨著反應時間拉長,除水劑之寡聚物產量提升,使產物出現固化之現象,難以進一步後續的分離。不同擔體的合成方式對於本實驗之影響不顯著,而除水劑的選著可影響本實驗之結果,本實驗的除水劑選擇使用2-氰基吡啶(2-cyanopyridine)可得較高的產物產率。而此反應之其中主要副產品為甘油醋酸酯,經由實驗結果顯示此觸媒對於副產品無法提高副產品選擇率,故出現無明顯趨勢的現象。
The catalytic carbonylation of glycerol with carbon dioxide over the catalyst cerium oxide/zinc oxide (〖CeO〗_2/ZnO) was studied in this work. Using cerium nitrate hexahydrate as a precursor, cerium oxide was successfully impregnated on the both hydrothermal and commercial zinc oxide, and the hydrothermal zinc oxide was synthesized by zinc chloride and sodium hydroxide with molar ratio 1:4 at 180 ℃ for 24 hours. The catalyst was characterized by a series of instrument such as XRD, N2-adsorption, ICP-OES, XPS and its basicity also measure by Hammett method. The 50:50 weight ratio of cerium oxide and zinc oxide has the highest specific surface area and more basicity between the different weight ratio of cerium oxide-zinc oxide catalyst. Generally, this carbonylation reaction was performed in a semi-batch reactor with 5 kg/cm2 continuous CO2 flow at 120 ℃, cooperate with 2-cyanopyridine or acetonitrile as dehydration agent. According to the result of carbonylation reaction, the highest yield of desire product, i.e., glycerol carbonate, was synthesized after 8 hours reaction, however the longer reaction time, the excess 2-cyanopyridine will oligomerizing and the product become more solidify. Therefore, 6 hours is the optimal reaction time with lower solidify and higher yields of desire product. Loading of the cerium oxide is a major effect of this reaction, the lower cerium oxide loading, the higher yields of desire product. The effect of the supports is not significant. The dehydration agent can affect this reaction significantly, according to the result, 2-cyanopyridine is a better dehydration agent in this reaction.
Agarwal, G. P. (1990). Glycerol. Microbial Bioproducts, 95-128.
AL-Kurdhani, J. M. H., Wang, H.-j., & Xu, X. (2018). Thermodynamic and Chemical Equilibrium in the Carbonylation the Glycerol with Carbon Dioxide to Produce Glycerol Carbonate by Using Metal Oxide Nanoparticles as Catalyst.
Anitha, M., Kamarudin, S. K., & Kofli, N. T. (2016). The potential of glycerol as a value-added commodity. Chemical Engineering Journal, 295, 119-130. Retrieved from https://www.sciencedirect.com/science/article/pii/S138589471630242X. doi:https://doi.org/10.1016/j.cej.2016.03.012
Aresta, M., Dibenedetto, A., Nocito, F., & Pastore, C. (2006). A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. Journal of Molecular Catalysis A: Chemical, 257(1-2), 149-153.
Behr, A., & Seidensticker, T. (2020). The Coproduct of Oleochemistry - GlycerolGlycerol. In A. Behr & T. Seidensticker (Eds.), Chemistry of Renewables: An Introduction (pp. 89-109). Berlin, Heidelberg: Springer Berlin Heidelberg.
Biesinger, M. C., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2010). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 257(3), 887-898. Retrieved from https://www.sciencedirect.com/science/article/pii/S0169433210010287. doi:https://doi.org/10.1016/j.apsusc.2010.07.086
Boz, N., Degirmenbasi, N., & Kalyon, D. M. (2013). Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds. Applied Catalysis B: Environmental, 138, 236-242.
Chen, H. M., Chen, X. H., Fang, S., & Yang, L. Z. (2015). Effect of Preparation Technology of Nano-ZnO on Its Morphology and Photocatalytic Activity. Integrated Ferroelectrics, 164(1), 15-22.
Chernyak, Y. (2006). Dielectric constant, dipole moment, and solubility parameters of some cyclic acid esters. Journal of Chemical & Engineering Data, 51(2), 416-418.
Ciriminna, R., Pina, C. D., Rossi, M., & Pagliaro, M. (2014). Understanding the glycerol market. European Journal of Lipid Science and Technology, 116(10), 1432-1439.
Climent, M. J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., & Concepción, P. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 269(1), 140-149. Retrieved from https://www.sciencedirect.com/science/article/pii/S0021951709003704. doi:https://doi.org/10.1016/j.jcat.2009.11.001
Dass, C. (2007). Fundamentals of contemporary mass spectrometry: John Wiley & Sons.
de Caro, P., Bandres, M., Urrutigoïty, M., Cecutti, C., & Thiebaud-Roux, S. (2019). Recent Progress in Synthesis of Glycerol Carbonate and Evaluation of Its Plasticizing Properties. Frontiers in Chemistry, 7. Retrieved from https://www.frontiersin.org/article/10.3389/fchem.2019.00308. doi:10.3389/fchem.2019.00308
Esteban, J., Fuente, E., González-Miquel, M., Blanco, Á., Ladero, M., & García-Ochoa, F. (2014). Sustainable joint solventless coproduction of glycerol carbonate and ethylene glycol via thermal transesterification of glycerol. RSC advances, 4(95), 53206-53215.
EU-Commission. (2003). Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. Official Journal of the European Union, 5.
Franklin, S. (1948). Carbonate-haloformate of glycerol and method of producing same. In: Google Patents.
Giechaskiel, B., & Clairotte, M. (2021). Fourier Transform Infrared (FTIR) Spectroscopy for Measurements of Vehicle Exhaust Emissions: A Review. Applied Sciences, 11(16), 7416.
Hayashi, M., Suzuki, T., Hayashi, T., Kamei, M., & Kurita, K. (2010). Plant-activating agent. In: Google Patents.
Helwani, Z., Othman, M., Aziz, N., Kim, J., & Fernando, W. (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Applied Catalysis A: General, 363(1-2), 1-10.
Holmiere, S., Valentin, R., Maréchal, P., & Mouloungui, Z. (2017). Esters of oligo-(glycerol carbonate-glycerol): New biobased oligomeric surfactants. Journal of Colloid and Interface Science, 487, 418-425. Retrieved from https://www.sciencedirect.com/science/article/pii/S0021979716308396. doi:https://doi.org/10.1016/j.jcis.2016.10.072
Hu, J., Gu, Y., Guan, Z., Li, J., Mo, W., Li, T., & Li, G. (2011). An Efficient Palladium Catalyst System for the Oxidative Carbonylation of Glycerol to Glycerol Carbonate. ChemSusChem, 4(12), 1767-1772. Retrieved from https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201100337. doi:https://doi.org/10.1002/cssc.201100337
Ji, Y. (2019). Recent Development of Heterogeneous Catalysis in the Transesterification of Glycerol to Glycerol Carbonate. Catalysts, 9(7), 581. Retrieved from https://www.mdpi.com/2073-4344/9/7/581.
Katryniok, B., Kimura, H., Skrzyńska, E., Girardon, J.-S., Fongarland, P., Capron, M., Ducoulombier, R., Mimura, N., Paul, S., & Dumeignil, F. (2011). Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chemistry, 13(8), 1960-1979.
Kerr, B. J., Dozier III, W. A., & Bregendahl, K. (2007). Nutritional value of crude glycerin for nonruminants. Paper presented at the Proceedings of the 23rd Annual Carolina Swine Nutrition Conference. Raleigh, NC.
Kondawar, S., Mane, R., Vasishta, A., More, S., Dhengale, S., & Rode, C. (2017). Carbonylation of glycerol with urea to glycerol carbonate over supported Zn catalysts. Applied Petrochemical Research, 7(1), 41-53.
Kovvali, A. S., & Sirkar, K. K. (2002). Carbon Dioxide Separation with Novel Solvents as Liquid Membranes. Industrial & Engineering Chemistry Research, 41(9), 2287-2295. Retrieved from https://doi.org/10.1021/ie010757e. doi:10.1021/ie010757e
Kulal, N., Vetrivel, R., Ganesh Krishna, N., & Shanbhag, G. V. (2021). Zn-Doped CeO2 Nanorods for Glycerol Carbonylation with CO2. ACS Applied Nano Materials, 4(5), 4388-4397.
Kumar, L. R., Yellapu, S. K., Tyagi, R. D., & Zhang, X. (2019). A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production. Bioresource Technology, 293, 122155. Retrieved from https://www.sciencedirect.com/science/article/pii/S0960852419313859. doi:https://doi.org/10.1016/j.biortech.2019.122155
Lameiras, P., Boudesocque, L., Mouloungui, Z., Renault, J.-H., Wieruszeski, J.-M., Lippens, G., & Nuzillard, J.-M. (2011). Glycerol and glycerol carbonate as ultraviscous solvents for mixture analysis by NMR. Journal of Magnetic Resonance, 212(1), 161-168. Retrieved from https://www.sciencedirect.com/science/article/pii/S1090780711002084. doi:https://doi.org/10.1016/j.jmr.2011.06.021
Li, H., Jiao, X., Li, L., Zhao, N., Xiao, F., Wei, W., Sun, Y., & Zhang, B. (2015). Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO 2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M= Li, Mg and Zr) hydrotalcites. Catalysis Science & Technology, 5(2), 989-1005.
Li, Y., Liu, H., Zheng, Z., Fu, Z., He, D., & Zhang, Q. (2022). Synthesis of Glycerol Carbonate via Alcoholysis of Urea with Glycerol: Current Status and Future Prospects. Industrial & Engineering Chemistry Research, 61(17), 5698-5711. Retrieved from https://doi.org/10.1021/acs.iecr.2c00667. doi:10.1021/acs.iecr.2c00667
Liu, J., & He, D. (2018). Transformation of CO2 with glycerol to glycerol carbonate by a novel ZnWO4-ZnO catalyst. Journal of CO2 Utilization, 26, 370-379. Retrieved from https://www.sciencedirect.com/science/article/pii/S221298201830060X. doi:https://doi.org/10.1016/j.jcou.2018.05.025
Magniont, C., Escadeillas, G., Oms-Multon, C., & De Caro, P. (2010). The benefits of incorporating glycerol carbonate into an innovative pozzolanic matrix. Cement and Concrete Research, 40(7), 1072-1080. Retrieved from https://www.sciencedirect.com/science/article/pii/S0008884610000785. doi:https://doi.org/10.1016/j.cemconres.2010.03.009
Marques Correia, L., Cecilia, J. A., Rodríguez-Castellón, E., Cavalcante, C. L., & Vieira, R. S. (2017). Relevance of the physicochemical properties of calcined quail eggshell (CaO) as a catalyst for biodiesel production. Journal of Chemistry, 2017.
Martin, A., & Richter, M. (2011). Oligomerization of glycerol – a critical review. European Journal of Lipid Science and Technology, 113(1), 100-117. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/ejlt.201000386. doi:https://doi.org/10.1002/ejlt.201000386
Mizuno, T., Nakai, T., & Mihara, M. (2010a). Facile synthesis of glycerol carbonate from glycerol using selenium‐catalyzed carbonylation with carbon monoxide. Heteroatom Chemistry, 21(7), 541-545.
Mizuno, T., Nakai, T., & Mihara, M. (2010b). New synthesis of glycerol carbonate from glycerol using sulfur‐assisted carbonylation with carbon monoxide. Heteroatom Chemistry: An International Journal of Main Group Elements, 21(2), 99-102.
Mota, C. J., Peres Pinto, B., & de Lima, A. L. (2017). Glycerol utilization. In Glycerol (pp. 11-19): Springer.
Nda-Umar, U. I., Ramli, I. B., Muhamad, E. N., Azri, N., Amadi, U. F., & Taufiq-Yap, Y. H. (2020). Influence of heterogeneous catalysts and reaction parameters on the acetylation of glycerol to acetin: A review. Applied Sciences, 10(20), 7155.
Nomanbhay, S., Hussein, R., & Ong, M. Y. (2018). Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: a review. Green Chemistry Letters and Reviews, 11(2), 135-157.
Nomanbhay, S., Ong, M. Y., Chew, K. W., Show, P.-L., Lam, M. K., & Chen, W.-H. (2020). Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review. Energies, 13(6), 1483. Retrieved from https://www.mdpi.com/1996-1073/13/6/1483.
Norjannah, B., Ong, H. C., Masjuki, H., Juan, J., & Chong, W. (2016). Enzymatic transesterification for biodiesel production: a comprehensive review. RSC advances, 6(65), 60034-60055.
Pagliaro, M. (2017). Properties, applications, history, and market. In (pp. 1-21): Elsevier.
Paparazzo, E. (2018). Use and mis-use of x-ray photoemission spectroscopy Ce3d spectra of Ce2O3 and CeO2. Journal of Physics: Condensed Matter, 30(34), 343003.
Pathak, S. (2015). Acid catalyzed transesterification. Journal of Chemical and Pharmaceutical Research, 7(3), 1780-1786.
Procopio, D., & Di Gioia, M. L. (2022). An Overview of the Latest Advances in the Catalytic Synthesis of Glycerol Carbonate. Catalysts, 12(1), 50. Retrieved from https://www.mdpi.com/2073-4344/12/1/50.
Quienne, B., Kasmi, N., Dieden, R., Caillol, S., & Habibi, Y. (2020). Isocyanate-Free Fully Biobased Star Polyester-Urethanes: Synthesis and Thermal Properties. Biomacromolecules, 21(5), 1943-1951. Retrieved from https://doi.org/10.1021/acs.biomac.0c00156. doi:10.1021/acs.biomac.0c00156
Quispe, C. A. G., Coronado, C. J. R., & Carvalho Jr, J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475-493. Retrieved from https://www.sciencedirect.com/science/article/pii/S1364032113003948. doi:https://doi.org/10.1016/j.rser.2013.06.017
Rezania, S., Oryani, B., Park, J., Hashemi, B., Yadav, K. K., Kwon, E. E., Hur, J., & Cho, J. (2019). Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Conversion and Management, 201, 112155. Retrieved from https://www.sciencedirect.com/science/article/pii/S0196890419311616. doi:https://doi.org/10.1016/j.enconman.2019.112155
Rokicki, G., Rakoczy, P., Parzuchowski, P., & Sobiecki, M. (2005). Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate. Green Chemistry, 7(7), 529-539.
Rousseau, J., Rousseau, C., Lynikaite˙, B., Šačkus, A., de Leon, C., Rollin, P., & Tatibouët, A. (2009). Tosylated glycerol carbonate, a versatile bis-electrophile to access new functionalized glycidol derivatives. Tetrahedron, 65(41), 8571-8581. Retrieved from https://www.sciencedirect.com/science/article/pii/S0040402009011739. doi:https://doi.org/10.1016/j.tet.2009.07.095
Rubio-Marcos, F., Calvino-Casilda, V., Bañares, M. A., & Fernandez, J. F. (2010). Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. Journal of Catalysis, 275(2), 288-293. Retrieved from https://www.sciencedirect.com/science/article/pii/S0021951710002915. doi:https://doi.org/10.1016/j.jcat.2010.08.009
Sahani, S., Upadhyay, S. N., & Sharma, Y. C. (2021). Critical Review on Production of Glycerol Carbonate from Byproduct Glycerol through Transesterification. Industrial & Engineering Chemistry Research, 60(1), 67-88. Retrieved from https://doi.org/10.1021/acs.iecr.0c05011. doi:10.1021/acs.iecr.0c05011
Salari, M., Varela, J. C., Zhang, H., & Grinstaff, M. W. (2021). Sustainable glycerol carbonate electrolytes for Li-ion supercapacitors: performance evaluation of butyl, benzyl, and ethyl glycerol carbonates. Materials Advances, 2(18), 6049-6057.
Salawitch, R. J., Canty, T. P., Hope, A. P., Tribett, W. R., & Bennett, B. F. (2017). Paris climate agreement: Beacon of hope: Springer Nature.
Sonnati, M. O., Amigoni, S., de Givenchy, E. P. T., Darmanin, T., Choulet, O., & Guittard, F. (2013). Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chemistry, 15(2), 283-306.
Sorda, G., Banse, M., & Kemfert, C. (2010). An overview of biofuel policies across the world. Energy Policy, 38(11), 6977-6988. Retrieved from https://www.sciencedirect.com/science/article/pii/S0301421510005434. doi:https://doi.org/10.1016/j.enpol.2010.06.066
Su, X., Lin, W., Cheng, H., Zhang, C., Wang, Y., Yu, X., Wu, Z., & Zhao, F. (2017). Metal-free catalytic conversion of CO 2 and glycerol to glycerol carbonate. Green Chemistry, 19(7), 1775-1781.
Sweeley, C., Bentley, R., Makita, M., & Wells, W. (1963). Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. Journal of the American Chemical Society, 85(16), 2497-2507.
Takamura, K., Fischer, H., & Morrow, N. R. (2012). Physical properties of aqueous glycerol solutions. Journal of Petroleum Science and Engineering, 98-99, 50-60. Retrieved from https://www.sciencedirect.com/science/article/pii/S0920410512002185. doi:https://doi.org/10.1016/j.petrol.2012.09.003
Tan, H., Aziz, A. A., & Aroua, M. (2013). Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118-127.
Teles, J. H., Rieber, N., & Harder, W. (1994). Preparation of glyceryl carbonate. In: Google Patents.
Teng, W. K., Ngoh, G. C., Yusoff, R., & Aroua, M. K. (2014). A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters. Energy Conversion and Management, 88, 484-497. Retrieved from https://www.sciencedirect.com/science/article/pii/S0196890414007602. doi:https://doi.org/10.1016/j.enconman.2014.08.036
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and applied chemistry, 87(9-10), 1051-1069.
Vieville, C., Yoo, J., Pelet, S., & Mouloungui, Z. (1998). Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins. Catalysis Letters, 56(4), 245-247.
Wade, L. G. S. J. W. (2017). Organic chemistry.
Wan Isahak, W. N. R., Che Ramli, Z. A., Ismail, M., Mohd Jahim, J., & Yarmo, M. A. (2015). Recovery and Purification of Crude Glycerol from Vegetable Oil Transesterification. Separation & Purification Reviews, 44(3), 250-267. Retrieved from https://doi.org/10.1080/15422119.2013.851696. doi:10.1080/15422119.2013.851696
Wrigley, E. A. (2013). Energy and the English Industrial Revolution. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 371(1986). Retrieved from <Go to ISI>://WOS:000314154100008. doi:10.1098/rsta.2011.0568
Zhang, Q., Yuan, H.-Y., Lin, X.-T., Fukaya, N., Fujitani, T., Sato, K., & Choi, J.-C. (2020). Calcium carbide as a dehydrating agent for the synthesis of carbamates, glycerol carbonate, and cyclic carbonates from carbon dioxide. Green Chemistry, 22(13), 4231-4239.
校內:2027-09-03公開