簡易檢索 / 詳目顯示

研究生: 羅舜隆
Low, Soon-Long
論文名稱: 以氧化鈰/氧化鋅催化於溫和條件下進行甘油直接羰化法製備有機碳酸酯之研究
Study on Catalytic Carbonylation of Glycerol to Organic Carbonates over Cerium Oxide/Zinc Oxide
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 98
中文關鍵詞: 氧化鈰/氧化鋅甘油直接碳化法甘油碳酸酯甘油醋酸酯除水劑
外文關鍵詞: Cerium oxide/zinc oxide, glycerol, direct carbonylation, glycerol carbonate, glycerol acetate, dehydration agent
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著18世紀工業革命的到來,促使機械代替人力,人機械的使用需要大量的能源,化石能源為主要的能源之用。而20世紀末的三次石油危機打響了能源危機的警鐘,各國紛紛推廣可再生能源取代不可再生能源。生質柴油為一種具有潛力的可再生能源,他是一種生物可降解性的能源,且對環境友善,故各國推出一系列政策鼓勵開發生質能源。生質柴油的快速發展促使其主要副產品甘油出現了供過於求的現象,尋求一種能將甘油轉化為高附加價值商品是當今迫切需要解決的課題。而其中甘油的衍生品甘油碳酸酯具有廣泛的應用,本實驗嘗試使用甘油藉由直接羰化法合成甘油碳酸酯以達到甘油高值化。
    本實驗使用了水熱合成及市售氧化鋅作為擔體,使用六水合硝酸鈰作為前驅物以濕式含浸法於表面擔載氧化鈰,形成氧化鈰/氧化鋅之觸媒,並藉由XRD,SEM,ICP等鑑定觸媒之性質。觸媒應用於甘油直接羰化法反應中並探討影響甘油直接羰化法之因素。
    經由實驗結果顯示,以氧化鈰/氧化鋅重量比為10:90可得最佳之產物產率 15 %,且隨著反應時間加長,產物產率提高,但是隨著反應時間拉長,除水劑之寡聚物產量提升,使產物出現固化之現象,難以進一步後續的分離。不同擔體的合成方式對於本實驗之影響不顯著,而除水劑的選著可影響本實驗之結果,本實驗的除水劑選擇使用2-氰基吡啶(2-cyanopyridine)可得較高的產物產率。而此反應之其中主要副產品為甘油醋酸酯,經由實驗結果顯示此觸媒對於副產品無法提高副產品選擇率,故出現無明顯趨勢的現象。

    The catalytic carbonylation of glycerol with carbon dioxide over the catalyst cerium oxide/zinc oxide (〖CeO〗_2/ZnO) was studied in this work. Using cerium nitrate hexahydrate as a precursor, cerium oxide was successfully impregnated on the both hydrothermal and commercial zinc oxide, and the hydrothermal zinc oxide was synthesized by zinc chloride and sodium hydroxide with molar ratio 1:4 at 180 ℃ for 24 hours. The catalyst was characterized by a series of instrument such as XRD, N2-adsorption, ICP-OES, XPS and its basicity also measure by Hammett method. The 50:50 weight ratio of cerium oxide and zinc oxide has the highest specific surface area and more basicity between the different weight ratio of cerium oxide-zinc oxide catalyst. Generally, this carbonylation reaction was performed in a semi-batch reactor with 5 kg/cm2 continuous CO2 flow at 120 ℃, cooperate with 2-cyanopyridine or acetonitrile as dehydration agent. According to the result of carbonylation reaction, the highest yield of desire product, i.e., glycerol carbonate, was synthesized after 8 hours reaction, however the longer reaction time, the excess 2-cyanopyridine will oligomerizing and the product become more solidify. Therefore, 6 hours is the optimal reaction time with lower solidify and higher yields of desire product. Loading of the cerium oxide is a major effect of this reaction, the lower cerium oxide loading, the higher yields of desire product. The effect of the supports is not significant. The dehydration agent can affect this reaction significantly, according to the result, 2-cyanopyridine is a better dehydration agent in this reaction.

    摘要 I Extended Abstract II 誌謝 XIV 目錄 XV 表目錄 XX 圖目錄 XXII 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 4 第二章 文獻回顧 6 2.1 甘油 6 2.1.1 甘油的歷史 6 2.1.2 甘油之物理及化學性質 7 2.1.3 甘油之生產方式 8 2.1.3.1 丙烯與氯氣反應 8 2.1.3.2 油脂轉酯化反應 9 2.1.4 粗製甘油之精製純化(Purification of crude glycerol) 12 2.1.5 甘油之市場及應用 12 2.2 甘油碳酸酯 15 2.2.1 甘油碳酸酯之物理及化學性質 15 2.2.2 甘油碳酸酯之應用 17 2.2.2.1 高分子工業 17 2.2.2.2 化學工業 18 2.2.2.3 半導體行業 18 2.2.2.4 農業 18 2.2.2.5 建築業 19 2.2.2.6 製藥業及化妝品行業 19 2.3 甘油碳酸酯之合成 20 2.3.1 光氣合成法 20 2.3.2 尿素合成法 (Alcoholysis of Urea with Glycerol) 21 2.3.3 轉酯化法(Transesterification of Glycerol) 23 2.3.4 轉羰基法(Transcarbonatation of Glycerol) 24 2.3.5 直接羰化法 (Direct carbonylation) 25 2.3.5.1 甘油與一氧化碳和氧氣反應 25 2.3.5.2 甘油與二氧化碳反應 26 第三章 實驗儀器與研究方法 28 3.1 實驗架構 28 3.2 實驗藥品 29 3.3 實驗設備 31 3.4 實驗方法 33 3.4.1 CeO2/ZnO觸媒之合成 33 3.4.1.1 水熱合成氧化鋅 33 3.4.1.2 濕式含浸法 33 3.4.2 甘油直接羰化反應 33 3.4.3 矽烷化樣品 34 3.4.4 產物分析 35 3.4.4.1 傅利葉紅外線光譜(Fourier Transform Infrared Ray Spectroscopy, FTIR) 35 3.4.4.2 超導核磁共振儀 (Superconducting Nuclear Magnetic Resonance,NMR) 36 3.4.4.3 氣相層析儀-質譜儀分析(Gas chromatography-mass spectrometry, GC-MS) 36 3.4.4.4 產物定量分析 37 3.5 觸媒特性分析 39 3.5.1 X光繞射分析儀(X-ray Diffraction Analyzer, XRD) 39 3.5.2 掃描式電子顯微鏡 (Scanning Electron Microscope) 40 3.5.3 能量散佈光譜儀 (Energy Dispersive X-ray Spectroscopy, EDS or EDX) 41 3.5.4 比表面積與孔隙分佈分析儀 (Specific Surface Area & Pore Size Distribution Analyzer, N2 sorption analyzer) 41 3.5.5 高解析電子能譜儀(High Resolution X-ray Photoelectron Spectrometer, HRXPS) 43 3.5.6 觸媒之鹼性點位鑑定 43 第四章 結果與討論 44 4.1 氧化鋅之水熱合成 44 4.1.1 XRD晶型之分析 44 4.1.2 SEM分析 48 4.2 氧化鈰/氧化鋅觸媒之鑒定 49 4.2.1 氧化鈰與氧化鋅比例之觸媒催化活性影響 49 4.2.1.1 XRD晶型之分析 49 4.2.1.2 SEM晶型分析 50 4.2.1.3 XPS分析 52 4.2.1.4 EDS之元素分析 53 4.2.1.5 ICP-OES之成分分析 54 4.2.1.6 N2-sorption 分析 56 4.2.1.7 觸媒之鹼度測試 60 4.2.2 煅燒溫度之影響 62 4.2.2.1 XRD分析 62 4.2.2.2 .XPS圖譜 63 4.2.3 氧化鋅合成方式之影響 66 4.2.3.1 XRD晶型之分析 66 4.2.3.2 ICP-OES之成分分析 67 4.2.3.3 N2-adsorption分析 67 4.2.3.4 觸媒之鹼性分析 68 4.3 甘油直接羰化法研究 69 4.3.1 產物鑑定方法 69 4.3.1.1 FTIR 69 4.3.1.2 NMR 70 4.3.1.3 GC-MS 71 4.3.2 產物之檢量線繪製 73 4.3.2.1 GC-BID之檢量線 74 4.3.3 甘油之直接羰化法 76 4.3.3.1 反應時間 77 4.3.3.2 氧化鈰之擔載比例 79 4.3.3.3 氧化鋅之合成方式 81 4.3.3.4 除水劑種類 82 第五章 結論與未來展望 84 5.1 結論 84 5.2 未來展望 85 參考文獻 86 附錄 A 甘油含水量 94 附錄 B 矽烷化參數選擇 95 附錄C 鹼度測試之顏色變化 97

    Agarwal, G. P. (1990). Glycerol. Microbial Bioproducts, 95-128.

    AL-Kurdhani, J. M. H., Wang, H.-j., & Xu, X. (2018). Thermodynamic and Chemical Equilibrium in the Carbonylation the Glycerol with Carbon Dioxide to Produce Glycerol Carbonate by Using Metal Oxide Nanoparticles as Catalyst.

    Anitha, M., Kamarudin, S. K., & Kofli, N. T. (2016). The potential of glycerol as a value-added commodity. Chemical Engineering Journal, 295, 119-130. Retrieved from https://www.sciencedirect.com/science/article/pii/S138589471630242X. doi:https://doi.org/10.1016/j.cej.2016.03.012

    Aresta, M., Dibenedetto, A., Nocito, F., & Pastore, C. (2006). A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. Journal of Molecular Catalysis A: Chemical, 257(1-2), 149-153.

    Behr, A., & Seidensticker, T. (2020). The Coproduct of Oleochemistry - GlycerolGlycerol. In A. Behr & T. Seidensticker (Eds.), Chemistry of Renewables: An Introduction (pp. 89-109). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Biesinger, M. C., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2010). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 257(3), 887-898. Retrieved from https://www.sciencedirect.com/science/article/pii/S0169433210010287. doi:https://doi.org/10.1016/j.apsusc.2010.07.086

    Boz, N., Degirmenbasi, N., & Kalyon, D. M. (2013). Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds. Applied Catalysis B: Environmental, 138, 236-242.

    Chen, H. M., Chen, X. H., Fang, S., & Yang, L. Z. (2015). Effect of Preparation Technology of Nano-ZnO on Its Morphology and Photocatalytic Activity. Integrated Ferroelectrics, 164(1), 15-22.

    Chernyak, Y. (2006). Dielectric constant, dipole moment, and solubility parameters of some cyclic acid esters. Journal of Chemical & Engineering Data, 51(2), 416-418.

    Ciriminna, R., Pina, C. D., Rossi, M., & Pagliaro, M. (2014). Understanding the glycerol market. European Journal of Lipid Science and Technology, 116(10), 1432-1439.

    Climent, M. J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., & Concepción, P. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 269(1), 140-149. Retrieved from https://www.sciencedirect.com/science/article/pii/S0021951709003704. doi:https://doi.org/10.1016/j.jcat.2009.11.001

    Dass, C. (2007). Fundamentals of contemporary mass spectrometry: John Wiley & Sons.

    de Caro, P., Bandres, M., Urrutigoïty, M., Cecutti, C., & Thiebaud-Roux, S. (2019). Recent Progress in Synthesis of Glycerol Carbonate and Evaluation of Its Plasticizing Properties. Frontiers in Chemistry, 7. Retrieved from https://www.frontiersin.org/article/10.3389/fchem.2019.00308. doi:10.3389/fchem.2019.00308

    Esteban, J., Fuente, E., González-Miquel, M., Blanco, Á., Ladero, M., & García-Ochoa, F. (2014). Sustainable joint solventless coproduction of glycerol carbonate and ethylene glycol via thermal transesterification of glycerol. RSC advances, 4(95), 53206-53215.

    EU-Commission. (2003). Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. Official Journal of the European Union, 5.
    Franklin, S. (1948). Carbonate-haloformate of glycerol and method of producing same. In: Google Patents.

    Giechaskiel, B., & Clairotte, M. (2021). Fourier Transform Infrared (FTIR) Spectroscopy for Measurements of Vehicle Exhaust Emissions: A Review. Applied Sciences, 11(16), 7416.

    Hayashi, M., Suzuki, T., Hayashi, T., Kamei, M., & Kurita, K. (2010). Plant-activating agent. In: Google Patents.

    Helwani, Z., Othman, M., Aziz, N., Kim, J., & Fernando, W. (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Applied Catalysis A: General, 363(1-2), 1-10.

    Holmiere, S., Valentin, R., Maréchal, P., & Mouloungui, Z. (2017). Esters of oligo-(glycerol carbonate-glycerol): New biobased oligomeric surfactants. Journal of Colloid and Interface Science, 487, 418-425. Retrieved from https://www.sciencedirect.com/science/article/pii/S0021979716308396. doi:https://doi.org/10.1016/j.jcis.2016.10.072

    Hu, J., Gu, Y., Guan, Z., Li, J., Mo, W., Li, T., & Li, G. (2011). An Efficient Palladium Catalyst System for the Oxidative Carbonylation of Glycerol to Glycerol Carbonate. ChemSusChem, 4(12), 1767-1772. Retrieved from https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201100337. doi:https://doi.org/10.1002/cssc.201100337

    Ji, Y. (2019). Recent Development of Heterogeneous Catalysis in the Transesterification of Glycerol to Glycerol Carbonate. Catalysts, 9(7), 581. Retrieved from https://www.mdpi.com/2073-4344/9/7/581.

    Katryniok, B., Kimura, H., Skrzyńska, E., Girardon, J.-S., Fongarland, P., Capron, M., Ducoulombier, R., Mimura, N., Paul, S., & Dumeignil, F. (2011). Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chemistry, 13(8), 1960-1979.

    Kerr, B. J., Dozier III, W. A., & Bregendahl, K. (2007). Nutritional value of crude glycerin for nonruminants. Paper presented at the Proceedings of the 23rd Annual Carolina Swine Nutrition Conference. Raleigh, NC.

    Kondawar, S., Mane, R., Vasishta, A., More, S., Dhengale, S., & Rode, C. (2017). Carbonylation of glycerol with urea to glycerol carbonate over supported Zn catalysts. Applied Petrochemical Research, 7(1), 41-53.

    Kovvali, A. S., & Sirkar, K. K. (2002). Carbon Dioxide Separation with Novel Solvents as Liquid Membranes. Industrial & Engineering Chemistry Research, 41(9), 2287-2295. Retrieved from https://doi.org/10.1021/ie010757e. doi:10.1021/ie010757e

    Kulal, N., Vetrivel, R., Ganesh Krishna, N., & Shanbhag, G. V. (2021). Zn-Doped CeO2 Nanorods for Glycerol Carbonylation with CO2. ACS Applied Nano Materials, 4(5), 4388-4397.

    Kumar, L. R., Yellapu, S. K., Tyagi, R. D., & Zhang, X. (2019). A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production. Bioresource Technology, 293, 122155. Retrieved from https://www.sciencedirect.com/science/article/pii/S0960852419313859. doi:https://doi.org/10.1016/j.biortech.2019.122155

    Lameiras, P., Boudesocque, L., Mouloungui, Z., Renault, J.-H., Wieruszeski, J.-M., Lippens, G., & Nuzillard, J.-M. (2011). Glycerol and glycerol carbonate as ultraviscous solvents for mixture analysis by NMR. Journal of Magnetic Resonance, 212(1), 161-168. Retrieved from https://www.sciencedirect.com/science/article/pii/S1090780711002084. doi:https://doi.org/10.1016/j.jmr.2011.06.021

    Li, H., Jiao, X., Li, L., Zhao, N., Xiao, F., Wei, W., Sun, Y., & Zhang, B. (2015). Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO 2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M= Li, Mg and Zr) hydrotalcites. Catalysis Science & Technology, 5(2), 989-1005.

    Li, Y., Liu, H., Zheng, Z., Fu, Z., He, D., & Zhang, Q. (2022). Synthesis of Glycerol Carbonate via Alcoholysis of Urea with Glycerol: Current Status and Future Prospects. Industrial & Engineering Chemistry Research, 61(17), 5698-5711. Retrieved from https://doi.org/10.1021/acs.iecr.2c00667. doi:10.1021/acs.iecr.2c00667

    Liu, J., & He, D. (2018). Transformation of CO2 with glycerol to glycerol carbonate by a novel ZnWO4-ZnO catalyst. Journal of CO2 Utilization, 26, 370-379. Retrieved from https://www.sciencedirect.com/science/article/pii/S221298201830060X. doi:https://doi.org/10.1016/j.jcou.2018.05.025

    Magniont, C., Escadeillas, G., Oms-Multon, C., & De Caro, P. (2010). The benefits of incorporating glycerol carbonate into an innovative pozzolanic matrix. Cement and Concrete Research, 40(7), 1072-1080. Retrieved from https://www.sciencedirect.com/science/article/pii/S0008884610000785. doi:https://doi.org/10.1016/j.cemconres.2010.03.009

    Marques Correia, L., Cecilia, J. A., Rodríguez-Castellón, E., Cavalcante, C. L., & Vieira, R. S. (2017). Relevance of the physicochemical properties of calcined quail eggshell (CaO) as a catalyst for biodiesel production. Journal of Chemistry, 2017.

    Martin, A., & Richter, M. (2011). Oligomerization of glycerol – a critical review. European Journal of Lipid Science and Technology, 113(1), 100-117. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/ejlt.201000386. doi:https://doi.org/10.1002/ejlt.201000386

    Mizuno, T., Nakai, T., & Mihara, M. (2010a). Facile synthesis of glycerol carbonate from glycerol using selenium‐catalyzed carbonylation with carbon monoxide. Heteroatom Chemistry, 21(7), 541-545.

    Mizuno, T., Nakai, T., & Mihara, M. (2010b). New synthesis of glycerol carbonate from glycerol using sulfur‐assisted carbonylation with carbon monoxide. Heteroatom Chemistry: An International Journal of Main Group Elements, 21(2), 99-102.

    Mota, C. J., Peres Pinto, B., & de Lima, A. L. (2017). Glycerol utilization. In Glycerol (pp. 11-19): Springer.

    Nda-Umar, U. I., Ramli, I. B., Muhamad, E. N., Azri, N., Amadi, U. F., & Taufiq-Yap, Y. H. (2020). Influence of heterogeneous catalysts and reaction parameters on the acetylation of glycerol to acetin: A review. Applied Sciences, 10(20), 7155.

    Nomanbhay, S., Hussein, R., & Ong, M. Y. (2018). Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: a review. Green Chemistry Letters and Reviews, 11(2), 135-157.

    Nomanbhay, S., Ong, M. Y., Chew, K. W., Show, P.-L., Lam, M. K., & Chen, W.-H. (2020). Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review. Energies, 13(6), 1483. Retrieved from https://www.mdpi.com/1996-1073/13/6/1483.

    Norjannah, B., Ong, H. C., Masjuki, H., Juan, J., & Chong, W. (2016). Enzymatic transesterification for biodiesel production: a comprehensive review. RSC advances, 6(65), 60034-60055.

    Pagliaro, M. (2017). Properties, applications, history, and market. In (pp. 1-21): Elsevier.

    Paparazzo, E. (2018). Use and mis-use of x-ray photoemission spectroscopy Ce3d spectra of Ce2O3 and CeO2. Journal of Physics: Condensed Matter, 30(34), 343003.

    Pathak, S. (2015). Acid catalyzed transesterification. Journal of Chemical and Pharmaceutical Research, 7(3), 1780-1786.

    Procopio, D., & Di Gioia, M. L. (2022). An Overview of the Latest Advances in the Catalytic Synthesis of Glycerol Carbonate. Catalysts, 12(1), 50. Retrieved from https://www.mdpi.com/2073-4344/12/1/50.

    Quienne, B., Kasmi, N., Dieden, R., Caillol, S., & Habibi, Y. (2020). Isocyanate-Free Fully Biobased Star Polyester-Urethanes: Synthesis and Thermal Properties. Biomacromolecules, 21(5), 1943-1951. Retrieved from https://doi.org/10.1021/acs.biomac.0c00156. doi:10.1021/acs.biomac.0c00156

    Quispe, C. A. G., Coronado, C. J. R., & Carvalho Jr, J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475-493. Retrieved from https://www.sciencedirect.com/science/article/pii/S1364032113003948. doi:https://doi.org/10.1016/j.rser.2013.06.017

    Rezania, S., Oryani, B., Park, J., Hashemi, B., Yadav, K. K., Kwon, E. E., Hur, J., & Cho, J. (2019). Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Conversion and Management, 201, 112155. Retrieved from https://www.sciencedirect.com/science/article/pii/S0196890419311616. doi:https://doi.org/10.1016/j.enconman.2019.112155

    Rokicki, G., Rakoczy, P., Parzuchowski, P., & Sobiecki, M. (2005). Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate. Green Chemistry, 7(7), 529-539.

    Rousseau, J., Rousseau, C., Lynikaite˙, B., Šačkus, A., de Leon, C., Rollin, P., & Tatibouët, A. (2009). Tosylated glycerol carbonate, a versatile bis-electrophile to access new functionalized glycidol derivatives. Tetrahedron, 65(41), 8571-8581. Retrieved from https://www.sciencedirect.com/science/article/pii/S0040402009011739. doi:https://doi.org/10.1016/j.tet.2009.07.095

    Rubio-Marcos, F., Calvino-Casilda, V., Bañares, M. A., & Fernandez, J. F. (2010). Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. Journal of Catalysis, 275(2), 288-293. Retrieved from https://www.sciencedirect.com/science/article/pii/S0021951710002915. doi:https://doi.org/10.1016/j.jcat.2010.08.009

    Sahani, S., Upadhyay, S. N., & Sharma, Y. C. (2021). Critical Review on Production of Glycerol Carbonate from Byproduct Glycerol through Transesterification. Industrial & Engineering Chemistry Research, 60(1), 67-88. Retrieved from https://doi.org/10.1021/acs.iecr.0c05011. doi:10.1021/acs.iecr.0c05011

    Salari, M., Varela, J. C., Zhang, H., & Grinstaff, M. W. (2021). Sustainable glycerol carbonate electrolytes for Li-ion supercapacitors: performance evaluation of butyl, benzyl, and ethyl glycerol carbonates. Materials Advances, 2(18), 6049-6057.

    Salawitch, R. J., Canty, T. P., Hope, A. P., Tribett, W. R., & Bennett, B. F. (2017). Paris climate agreement: Beacon of hope: Springer Nature.

    Sonnati, M. O., Amigoni, S., de Givenchy, E. P. T., Darmanin, T., Choulet, O., & Guittard, F. (2013). Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chemistry, 15(2), 283-306.

    Sorda, G., Banse, M., & Kemfert, C. (2010). An overview of biofuel policies across the world. Energy Policy, 38(11), 6977-6988. Retrieved from https://www.sciencedirect.com/science/article/pii/S0301421510005434. doi:https://doi.org/10.1016/j.enpol.2010.06.066

    Su, X., Lin, W., Cheng, H., Zhang, C., Wang, Y., Yu, X., Wu, Z., & Zhao, F. (2017). Metal-free catalytic conversion of CO 2 and glycerol to glycerol carbonate. Green Chemistry, 19(7), 1775-1781.

    Sweeley, C., Bentley, R., Makita, M., & Wells, W. (1963). Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. Journal of the American Chemical Society, 85(16), 2497-2507.

    Takamura, K., Fischer, H., & Morrow, N. R. (2012). Physical properties of aqueous glycerol solutions. Journal of Petroleum Science and Engineering, 98-99, 50-60. Retrieved from https://www.sciencedirect.com/science/article/pii/S0920410512002185. doi:https://doi.org/10.1016/j.petrol.2012.09.003

    Tan, H., Aziz, A. A., & Aroua, M. (2013). Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118-127.

    Teles, J. H., Rieber, N., & Harder, W. (1994). Preparation of glyceryl carbonate. In: Google Patents.

    Teng, W. K., Ngoh, G. C., Yusoff, R., & Aroua, M. K. (2014). A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters. Energy Conversion and Management, 88, 484-497. Retrieved from https://www.sciencedirect.com/science/article/pii/S0196890414007602. doi:https://doi.org/10.1016/j.enconman.2014.08.036

    Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and applied chemistry, 87(9-10), 1051-1069.

    Vieville, C., Yoo, J., Pelet, S., & Mouloungui, Z. (1998). Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins. Catalysis Letters, 56(4), 245-247.
    Wade, L. G. S. J. W. (2017). Organic chemistry.

    Wan Isahak, W. N. R., Che Ramli, Z. A., Ismail, M., Mohd Jahim, J., & Yarmo, M. A. (2015). Recovery and Purification of Crude Glycerol from Vegetable Oil Transesterification. Separation & Purification Reviews, 44(3), 250-267. Retrieved from https://doi.org/10.1080/15422119.2013.851696. doi:10.1080/15422119.2013.851696

    Wrigley, E. A. (2013). Energy and the English Industrial Revolution. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 371(1986). Retrieved from <Go to ISI>://WOS:000314154100008. doi:10.1098/rsta.2011.0568

    Zhang, Q., Yuan, H.-Y., Lin, X.-T., Fukaya, N., Fujitani, T., Sato, K., & Choi, J.-C. (2020). Calcium carbide as a dehydrating agent for the synthesis of carbamates, glycerol carbonate, and cyclic carbonates from carbon dioxide. Green Chemistry, 22(13), 4231-4239.

    無法下載圖示 校內:2027-09-03公開
    校外:2027-09-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE