簡易檢索 / 詳目顯示

研究生: 李姵嫻
Lee, Pei-Hsien
論文名稱: 面板組裝之最佳動態配對模式
nono
指導教授: 李賢得
Lee, Shine-Der
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 90
中文關鍵詞: 配對組裝
外文關鍵詞: assembly, mating
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究探討薄膜電晶體液晶顯示器(TFT-LCD)之組立(Cell Assembly)製程中動態組合配對問題,組立製程主要是將薄膜電晶體陣列(Array)基板與彩色濾光片(CF)配對貼合,由於兩種基板的良率不一,且各個基板上不良面板的位置分佈也不同,故此製程的實際配對過程會影響到最終成品的產出率。隨著玻璃基板尺寸逐漸增大,切割方式更多,使得配對組合之複雜度呈指數成長,同時,不同的基板尺寸以及切割方式亦會影響暫存區之使用,進而影響面板組裝的產出時間。

      本研究主要考慮不同的基板切割方式與投入批量大小,在已知一製程上之薄膜電晶體陣列基板與彩色濾光片的基板個數以及各個基板上良品與不良品的位置分佈下,求出其最大的動態產出率。在此研究中,假設基板的良率已知,不同切割方式下,各種配對的面板組合陣列之良品位置為給定,且組裝的產出時間隨切割方式而變動,考慮在二種基板投入批量受到暫存區的限制下,建構數學規劃模式,求得最佳的動態配對。

      依據所建構數學規劃模式,發現目標式與限制式之係數矩陣具有特殊的結構,進而探討此動態配對問題的特性,並且依據上述特殊結構,將問題區分為三大類,發展不同的演算方法,以求得動態配對問題的最佳解;並延伸考慮至面板可修復之配對問題,並發展演算法,求得起始解,進而以運輸單形法求得最佳解,最後利用演算實驗來驗證演算法之起始解的求解品質與求解速度,由演算結果發現,演算法之起始解的求解品質良好且運用運輸單形表的演算次數十分低。最後,以利潤最大化為目標下,探討面板動態配對,並利用馬可夫鏈模式來求得面板配對之門檻值,亦即相同型式面板配對後,不同型式面板進行配對時所需之面板個數,發現存貨成本、面板價值,以及面板產出的機率會影響配對門檻值的大小,且當陣列基板與彩色濾光片的良率相同時,此三種因素對於配對門檻值的影響更為顯著。

    nono

    摘要...............................................Ⅰ 目錄...............................................Ⅱ 表目錄.............................................Ⅳ 圖目錄.............................................Ⅵ 第一章 緒論.........................................1 1.1研究動機.........................................1 1.2研究範圍與目的...................................3 1.3研究架構.........................................3 第二章 文獻探討.....................................5 2.1 產出管理........................................5 2.2 組裝模式........................................7 2.3 製程控制........................................9 第三章 面板動態配對之模式建構......................12 3.1 動態配對問題...................................12 3.2 基本模式與演算法...............................14 3.3 延伸模式.......................................28 第四章 演算實驗與結果..............................33 4.1不同的動態配對之演算法..........................33 4.2演算範例說明....................................35 4.3演算實驗........................................49 4.4 配對門檻值之求解與分析.........................55 第五章 結論與建議..................................59 5.1研究結果與理論特性..............................59 5.2未來研究方向與建議..............................60 參考文獻...........................................62 附錄1.1面板不可修復下,不同切割方式之數量矩陣......65 附錄1.2面板可修復下,不同切割方式之數量矩陣........67 附錄2 演算法之C++程式碼............................70 附錄3 不同切割方式下之配對門檻值...................79

    一、中文部分
    王鵬森,“液晶顯示器良率配對方法之研究”,國立交通大學工業工程與管理研究所博士 論文,民國九十三年六月。
    二、英文部分
    Baker, K.R., S.G. Powell, and D. F. Pyke, “Buffered and Unbuffered Assembly Systems with Variable Processing Times”, Journal of Manufacturing and Operations Management, 3 (1990), 200-223.
    Baker, K.R., S.G. Powell and D. F. Pyke, “Optimal Allocation of Work in Assembly Systems”, Management Science, 39 (1993), 101-106.
    Blackburn, J. D. and R. A. Millen, “Improved Heuristics for Multi-Stage Requirements Planning Systems”, Management Science, 28 (1982), 44-56.
    Card, J. P., D. L.Sniderman, and C. Klimasauskas, “Dynamic Neural Control for a Plasma Etch Process”, IEEE Transactions Neural Networks, 8 (1997), 883-901.
    Card, J. P., “A study in Dynamic Neural Control of Semiconductor Fabrication Processes”, IEEE Transactions Semiconductor Manufacturing, 13 (2000) , 359-365
    Duenyas, I., M. F. Keblis, and S. M. Pollock, “Dynamic Type Mating”, Management Science, 43 (1997), 751-763.
    Gershwin, S.B. and J. E. Schor, “Efficient Algorithms for Buffer Space Allocation”, Annals of Operations Research, 93 (2000), 117-144.
    Guu, S. M. and A. X. Zhang, “The Finite Multiple Lot Sizing Problem with Interrupted Geometric Yield and Holding Costs”, European Journal of Operational Research, 145 (2003), 635-644.
    Harrison, T. P. and H.S. Lewis, “Lot Sizing in Serial Assembly Systems with Multiple Constrained Resources”, Management Science, 42 (1996), 19-36.
    Heinrich, C. and C. Schneeweiss, “Multi-Stage Lot-Sizing for General Production Systems”, in S. Axsater, C. Schneeweiss, and E. Silver(Eds.),Lecture Notes in Economics and Mathematical Systems, Spring Verlag, Heidlberg, Germany, 1986.
    Jeong, B. ,S. W. Kim, and Y. J. Lee, “An Assembly Scheduler for TFT LCD manufacturing”, Computers & Industrial Engineering,41 (2001),37-58.
    Jeong, K. C., “Algorithms for Determining Capacities of Individual Buffers in Assembly/Disassembly Systems”, Computers & Industrial Engineering, 33 (1997), 605-608.
    Katok, E, H. S. Lewis and T. P. Harrison, “Lot Sizing in General Assembly Systems with Setup Costs, Setup Times, and Multiple Constrained Resources”, Management Science,44 (1998),859-877.
    Papadopulos, H.T. and M.I. Vidalis, “A heuristic Algorithm for the Buffer Allocation in Unreliable Unbalanced Production Lines”, Computers & Industrial Engineering, 41 (2001), 261-277.
    Rekhi, I., S. Chand, and H. Mokowitz, “A Note on Optimal Allocation of Work in Stochastic Assembly Systems”, European Journal of Operational Research, 137 (2002), 387-393.
    Tempelmeier, H. and S. Helber, “A Heuristic for Dynamic Multi-Item Multi-Level Capacitated Lotsizing for General Product Structure”, European Journal of Operational Research, 75 (1994), 296-311.
    Wang, Y and Y. Gerchak, “Input Control in A Batch Production System with Lead Times, Due Dates and Random Yields”, European Journal of Operational Research, 126 (2000), 371-385.
    Yamashita, H. and T. Altiok, “Buffer Capacity Allocation for a Desired Throughput in Production Lines”, IIE Transactions, 30 (1998), 883-891.
    Yano C. A. and H. L. Lee, “Lot Sizing with Random Yields: A Review”, Operations Research, 43 (1995), 311-334.
    Yee, S. T and J. A. Ventura, “A Petri Net Model to Determine Optimal Assembly Sequences with Assembly Operation Constraints”, Journal of Manufacturing System, 18 (1999), 203-213.
    Zhang, A. X. and S. M. Guu, “Properties of the Multiple Lot-Sizing Problem with Rigid Demands and General Yield Distributions”, Computers & Mathematics with Applications, 33 (1997), 55-65.

    下載圖示 校內:2006-07-14公開
    校外:2006-07-14公開
    QR CODE