| 研究生: |
簡榮泉 Chien, Jung-Chuan |
|---|---|
| 論文名稱: |
應用可靠度最佳設計評估晶圓級封裝之疲勞壽命 Fatigue Life Estimation of Wafer Level Package by Using Reliability-based Design Optimization |
| 指導教授: |
屈子正
Chiu, Tz-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 晶圓級封裝 、疲勞壽命 、可靠度設計最佳化 、性能指標法 |
| 外文關鍵詞: | wafer level package, fatigue, design optimization, performance measure approach |
| 相關次數: | 點閱:116 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晶圓級封裝(wafer level package, WLP)相較於傳統製程封裝有較小尺寸、較佳電性及較低製造成本等優點,因此被廣泛應用於攜帶型電子產品。由於各材料間之熱膨脹係數(coefficient of thermal expansion, CTE)不匹配,錫球接點及銅佈線在溫度循環時承受的熱應力將導致其發生疲勞破壞。因此為提升WLP熱循環下之疲勞壽命,透過幾何參數之最佳化,並設計最佳化之參數後再以實驗驗證結果為目前電子封裝研發之趨勢。
本文針對WLP進行以二次反應曲面(quadratic response surface)及有限元素模型之結構最佳化。考慮之設計參數包括銅墊片直徑及介電薄膜厚度,並利用全因子設計法(full factorial design)規劃參數之實驗配置。其中以三維之非線性有限元素計算錫球之塑性功循環增量及銅佈線之塑性應變範圍作為WLP疲勞壽命之損傷指標。為了考慮在尺寸參數之製程公差及疲勞試驗數據不足的情況,採用結合性能指標法(performance measure approach, PMA)之可靠度設計最佳化(reliability-based design optimization, RBDO)進行計算,並分別以損傷指標及疲勞壽命為目標函數,搜尋提升WLP結構可靠度之最佳參數組合。
本研究所得之結果可作為改進WLP結構可靠度參考,並可將所使用之系統化流程延伸應用於其他電子產品之疲勞壽命評估。
In wafer level packages (WLPs), fatigue crackings in solder joints and the redistribution layer (RDL) Cu traces are likely to occur under temperature cycling because of the mismatch in the coefficients of thermal expansion (CTEs) between package constituents. An important task in developing WLP technology is therefore to perform structural optimization for improving temperature cycling reliability. In this thesis, reliability optimizations of WLP by using quadratic response surface and finite element (FE) model are presented. Design variables including RDL Cu pad diameter, pad opening diameter and polymer dielectric thickness are considered. Damage indices including inelastic strain energy density and equivalent plastic strain increments are obtained by using numerical FE simulation to assess the fatigue life. For the response surface based analysis, a 3-level full factorial design is applied for constructing the response model. Uncertainties including manufacturing process tolerances and fatigue life distributions are considered in the analyses. By using either the damage indices or failure life as the objective function, a reliability-based design optimization (RBDO) with performance measure approach (PMA) is applied for determining the optimal interconnect geometry design for WLP.
[1] 江國寧, “微電子系統封裝基礎理論與應用技術,” 滄海書局, 2006.
[2] R. Darveaux, “Effect of simulation methodology on solder joint crack growth correlation,” Proceedings of the 50th Electronic Components and Technology Conference, pp. 1048-1058, 2000.
[3] Y.-B. Park, R. Mönig and C. A. Volkert, “Thermal fatigue as a possible failure mechanism in copper interconnects,” Thin Solid Films, Vol. 504, pp. 321-324, 2006.
[4] H. D. Merchant, M.G. Minor and “Mechanical fatigue of thin copper foil,” Journal of Electronic Materials, Vol. 28, pp. 998-1007, 1999.
[5] O. Kraft, R. Schwaiger, and P. Wellner, “Fatigue in thin films: lifetime and damage formation,” Materials Science and Engineering: A, Vol. 319, pp. 919-923, 2001.
[6] Y. Xiang, X. Chen and J. J. Vlassak, “The mechanical properties of electroplated Cu thin films measured by means of the bulge test technique,” Materials Research Society Symposium Proceedings, Vol. 695, pp. 189-196, 2002.
[7] X. J. Sun, C. C. Wang, J. Zhang, G. Liu, G. J. Zhang and X. D. Ding, “Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates,” Journal of Physics D: Applied Physics, Vol. 41, p. 195404, 2008.
[8] D. Wang, C. A. Volkert and O. Kraft, “Effect of length scale on fatigue life and damage formation in thin Cu films,” Materials Science and Engineering: A, Vol. 493, pp. 267-273, 2008
[9] Y. Hwangbo and J.-H. Song, “Fatigue life and plastic deformation behavior of electrodeposited copper thin films,” Materials Science and Engineering: A, Vol. 527, 2010.
[10] J. Tu, K. K. Choi, and Y. H. Park, “A new study on reliability-based design optimization,” Journal of Mechanical Design, Vol. 121, pp. 557-564, 1999.
[11] B. D. Youn, and K. K. Choi, “An investigation of nonlinearity of reliability-based design optimization approaches,” Journal of Mechanical Design, Vol. 126, pp. 403-411, 2004.
[12] C. R. Eboli, and L. E. Vaz, “Optimization of plane trusses with constraints in the reliability index beta,” Proceedings of the 6th World Congresses of Structural and Multidisciplinary Optimization, pp. 30-36, 2005.
[13] B. D. Youn, K. K. Choi, and Y. H. Park, “Hybrid analysis method for reliability-based design optimization,” Journal of Mechanical Design, Vol. 125, pp. 221-232, 2003.
[14] J. Liang, Z. P. Mourelatos, and J. Tu, “A single-loop method for reliability-based design optimization,” Proceedings of the ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 419-430, 2004.
[15] S. Shan, and G. G. Wang, “Reliable design space and complete single-loop reliability-based design optimization,” Reliability Engineering and System Safety, Vol. 93, pp. 1218-1230, 2008.
[16] X. Du, and W. Chen, “Sequential optimization and reliability assessment method for efficient probabilistic design,” Journal of Mechanical Design, Vol. 126, pp. 225-233, 2004.
[17] Z. Chen, H. Qiu, L. Gao, L. Su, and P. Li, “An adaptive decoupling approach for reliability-based design optimization,” Computers and Structures, Vol. 117, pp. 58-66, 2013.
[18] . Y. Aoues, and A. Chateauneuf, “Benchmark study of numerical methods for reliability-based design optimization,” Structural and Multidisciplinary Optimization, Vol. 41, pp. 277-294, 2010.
[19] P. T. Lin, “Utilization of Gaussian kernel reliability analysis in gradient-based transformed space for design optimization with arbitrarily distributed design uncertainties,” Proceedings of the 11th World Congress on Structural and Multidisciplinary Optimization, pp. 1-6, 2015.
[20] P. Limaye, B. Vandevelde, J. Van de Peer, S. Donders, and R. Darveaux, “Probabilistic design approach for package design and solder joint reliability optimization for a lead free BGA package,” Proceedings of the 6th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (EuroSimE), pp. 531-537, 2005.
[21] T. Zou and S. Mahadevan, “Versatile formulation for multiobjective reliability-based design optimization,” Journal of Mechanical Design, Vol. 128, pp. 1217-1226, 2006.
[22] 柯煇耀, 壽命驗證與評估-加速試驗技術之應用, 科技圖書, 2012.
[23] 毛昭陽, 以最佳等效錫球觀念修正子模型分析法進行疊晶球柵陣列構裝錫球可靠度之最佳化分析, 國立成功大學工程科學系博士論文, 2008.
[24] 林聖泉, 工程分析與最佳化設計, 台灣東華書局, 2011
[25] J. S. Arora, Introduction to Optimum Design, Academic Press, 2011.
[26] 楊昌裔, 可靠度工程, 新文京開發出版, 2007.
[27] 許凱勛, 隨機取樣SQP演算法以解決非線性可靠度限制式之最佳化問題, 國立成功大學機械工程學系碩士論文, 2009.
[28] ANSYS, Release 14.5, ANSYS, Inc., 2012.
[29] IPC-9701, Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments, IPC, Northbrook, 2002.
[30] 賴柏辰, 應用類神經網路及遺傳演算法於晶圓級封裝之結構最佳化, 國立成功大學機械工程學系碩士論文, 2013.
[31] MATLAB, R2013a, MathWorks, Inc., 2013.
[32] H. C. Yang, C. L. Kao, T. C. Chiu, C. C. Lee, S. C. Hung and C. P. Hung, “Quantitative reliability prediction model for wafer level package under board-level temperature cycling,” Proceedings of the International Microsystems, Packaging, Assembly and Circuits Technology Conference, pp. 563-566, 2014.
[33] J. Hunt, D. Huang, J. Chiu, M. M. C. Liu, J. Lin, J. W. Lou, C. Chen, C. L. Kao, “Reliability improvements for advanced wafer level packaging,” Proceedings of the Electric System-Integration Technology Conference, pp. 1-6, 2010.