簡易檢索 / 詳目顯示

研究生: 蔡宗翰
Tsai, Tsung-Han
論文名稱: 三-五族化合物半導體蕭特基式氣體感測器之研究
Investigation of III-V Compound Semiconductor Schottky-Type Gas Sensors
指導教授: 劉文超
Liu, Wen-Chau
共同指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 114
中文關鍵詞: 蕭特基二極體氮化鋁鎵砷化銦鋁感測器
外文關鍵詞: Schottky diode, AlGaN, InAlAs, sensor
相關次數: 點閱:76下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們研製一系列三-五族化合物半導體蕭特基式氣體感測器,包含蕭特基二極體以及異質場效結構電晶體。三-五族化合物半導體材料如:氮化鋁鎵及砷化銦鋁系列材料,可用來當作感測平台。由於三-五族化合物半導體具有較寬之能隙,因此,使用其製作而得之元件可適用於高溫環境之應用。此外,鈀和鉑分別對氫氣與氨氣具有良好的觸媒活性,可用來當作感測金屬
    。除了研究蕭特基式感測器在不同溫度下的感測效能外,也探討閘極絕緣層對感測器效能之影響。
    本論文首先探討鈀/氮化鋁鎵(金屬-半導體)與鈀/二氧化矽/氮化鋁鎵(金屬-氧化物-半導體)蕭特基二極體之氫氣感測特性。我們利用熱離子發射方程式來描述感測器於氫氣之環境下之電流-電壓特性。經由熱離子發射方程式,可得到二極體之蕭特基位障高度、理想因子及串聯電阻,並且可以觀察到此些參數會隨著不同濃度之氫氣而改變。我們從感測器之二極體參數、感測響應、響應時間方面探討金屬-半導體及金屬-氧化物-半導體之氫氣感測行為。
    其次,研究鉑/二氧化矽/氮化鋁鎵蕭特基二極體之氨氣感測特性。鉑金屬對於氨氣具有良好之觸媒活性。因此,可使用於檢測氨氣之感測金屬。根據三相接觸理論,我們藉由二氧化矽提升『觸媒金屬-氧化物-氨氣分子』接觸之機率,以提升氨氣分子之解離效率,並在不同氨氣濃度與溫度來之環境下,分析本感測器之氨氣感測行為。
    接著,研製鈀/變晶式高速載子移動率電晶體式高效能氫氣感測器。針對氫氣誘導效應對於電晶體之電性參數諸如:門檻電壓、轉導、汲極電流之導通/截止比例做完整探討,並進一步分析感測元件之平衡吸附與動力吸附模型。此外,以熱氧化方式成長熱氧化層於蕭特基接觸層上,形成金屬/氧化物/變晶式高速載子移動率電晶體。實驗結果顯示金屬/熱氧化層/變晶式電晶體不論是電性與感測效能方面皆大幅提升。由於本論文所研製之元件呈現良好之感測效能,且製程方式與微機電系統製程相容,本研究之感測元件在高效能感測器與微機電系統整合方面極具潛力。

    In this dissertation, a series of III-V compound semiconductor Schottky-type gas sensors, including Schottky diodes and heterostructure field-effect transistors, are fabricated and studied. III-V compound semiconductors, such as AlGaN- and InAlAs-based materials, are served as sensing platforms. The larger band gaps of those materials make the fabricated devices suitable for high-temperature operation. Pd and Pt are used as sensing metals due to their excellent catalytic activity toward hydrogen and ammonia gases, respectively. The electrical characteristics and gas-sensing performance of these sensors are investigated at different temperatures. Furthermore, the influence of gate insulator on the sensing performance of each sensing device is studied.
    First, hydrogen-sensing characteristics of metal semiconductor (MS) Pd/AlGaN-based and metal-oxide-semiconductor (MOS) Pd/SiO2/AlGaN-based Schottky diode-type sensors are studied. Thermionic emission (TE) equation is employed to characterize the current-voltage (I-V) behaviors of the studied devices under exposing to hydrogen gas. Schottky barrier height, ideality factor, and series resistance extracted from TE equation, are found to be sensitive to hydrogen gases with different concentrations. Hydrogen sensing behaviors of MS and MOS devices are investigated in terms of those diode parameters, sensing response, and response time.
    Second, ammonia-sensing characteristics of a Pt/AlGaN-based Schottky diode are studied. Pt metal shows high catalytic activity to ammonia gas. It is, therefore, used as the sensing metal for ammonia detection. Based on the “triple-point theorem”, SiO2 layer is employed to increase the “boundaries” between SiO2, Pt metal, and NH3 molecules, thus facilitating the dissociation of NH3 molecules. The temperature-dependent NH3 sensing behaviors are investigated for the studied device.
    Third, metamorphic high electron mobility transistors (MHEMTs)-type hydrogen sensors with catalytically active palladium (Pd) gate electrodes are fabricated and studied. Hydrogen-induced effects on electrical parameters of a field-effect transistor (FET), such as threshold voltage, transconductance, and on-off current ratio are investigated. Equilibrium adsorption and kinetic adsorption are studied for the devices. In addition, an MHEMT with thermally-grown gate oxide are also fabricated to be compared with the metal-oxide (MS) Pd/MHEMTs. It is found that the electrical and sensing performance of the MHEMTs is significantly improved by the thermally-grown gate oxide. Based on the good results and compatibility of fabrication process of these devices, the studied devices show the promise for the integration of high-performance sensor and micro-electro-mechanical system (MEMS).

    摘要 I Abstract III Contents XIII Table Lists XV Figure Captions XV Chapter 1 Introduction.................................1 1-1. Literature Review.................................1 Chapter 2 Investigation of Pd/AlGaN-Based Schottky Diode-Type Hydrogen Sensors.........................6 2-1. Introduction......................................6 2-2. Device Structure and Fabrication..................7 2-3. Experimental Results and Discussion...............7 2-3-1 Hydrogen Sensing Mechanism of a Schottky Diode...8 2-3-2 Hydrogen Sensing Characteristics of a Pd/AlGaN-Based Schottky Diode ........................................8 2-3-3 Hydrogen Sensing Characteristics of a Pd/SiO2/AlGaN-Based Schottky Diode..................................14 2-4. Summary..........................................18 Chapter 3 Ammonia Sensing Properties of a Pt/SiO2/AlGaN-Based Schottky Diode....................20 3-1. Introduction.....................................20 3-1-1 Environmental Gas Analysis......................20 3-1-2 Automotive Industry.............................20 3-1-3 Chemical Industry...............................21 3-1-4 Disease Analysis................................21 3-1-5 GaN-based Gas Sensors and Ammonia Sensing Mechanism..............................21 3-2. Device Structure and Fabrication.................23 3-3. Experimental Results and Discussion..............23 3-4. Summary..........................................26 Chapter 4 Hydrogen Sensing Characteristics of Metamorphic-Based High Electron Mobility Transistors...........28 4-1. Introduction.....................................28 4-2. Device Structure and Fabrication.................29 4-3. Experimental Results and Discussion..............30 4-3-1 Sensing Mechanism...............................30 4-3-2 Threshold Voltage Shift.........................31 4-3-3 Gate Sensitivity................................33 4-3-4 On-Off Current Ratio............................34 4-3-5 Transient-State Response........................34 4-3-6 Performance Enhancement by Thermally-Grown Gate Insulator...................37 4-4. Summary..........................................38 Chapter 5 Conclusion.....................................41 Chapter 6 Future Works.......44 6-1. Improvement of Schottky Diode-Type Sensors.......44 6-2. Performance Enhancement of Transistor-Type Gas Sensors.................................45 6-3. Development of HEMT-Based Biosensors.............45 References............................................47 Tables...............................56 Figures...........................57 Publication List of Tsung-Han Tsai......................105

    [1]T. J. Fawcett, J. T. Wolan, A. L. Spetz, M. Reyes, and S. E. Saddow, "Thermal detection mechanism of SiC based hydrogen resistive gas sensors," Appl. Phys. Lett., vol. 89 pp.182102, 2006.
    [2]F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science, vol. 293, pp. 2227-2231, 2001.
    [3]M. Ali, V. Cimalla, V. Lebedev, V. Tilak, P. M. Sandvik, D. W. Merfeld, and O. Ambacher, “A Study of Hydrogen Sensing Performance of Pt–GaN Schottky Diodes,” IEEE. SENS. J., vol. 6, pp. 1115-1119, 2006.
    [4]Z. Zhao, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuators B, vol. 113, pp. 532-538, 2006.
    [5]E. F. MuCullen, H. E. Prakasam, W. Mo, R. Naik, K. Y. S. Ng, L. Rimai, and G. W. Auner, “Electrical characterization of metal/AlN/Si thin film hydrogen sensors with Pd and Al gates,” J. Appl. Phys., vol. 93, pp. 5757-5762, 2003.
    [6]S. Y. Chiu, H. W. Huang, K. C. Liang, T. H. Huang, K. P. Liu, J. H. Tsai, and W. S. Lour, High sensing response Pd/GaN hydrogen sensors with a porous-like mixture of Pd and SiO2, Electron. Lett. vol. 45, pp. 231–232, 2009.
    [7]E. D. Bartolomeo, N. Kaabbuathong, M. L. Grilli, and E. Traversa, “Planar electrochemical sensors based on tape-cast YSZ layers and oxide electrodes,” Solid State Ionics, vol. 171, pp. 173-181, 2004.
    [8]S. Y. Chiu, H. W. Huang, T. H. Huang, K. C. Liang, K. P. Liu, J. H. Tsai, and W. S. Lour, Comprehensive study of Pd/GaN metal–semiconductor–metal hydrogen sensors with symmetrically bi-directional sensing performance, Sens. Actuators B vol. 138 pp. 422–427, 2009.
    [9]Y. G. Choi, G. Sakai, K. Shimanoe, N. Miura, and N. Yamazoe, ”Wet process- prepared thick films of WO3 for NO2 sensing," Sens. Actuators B, vol. 95, pp. 258-265, 2003.
    [10]S. Aygün and D. Cann, “Hydrogen sensitivity of doped CuO/ZnO heterocontact sensors,” Sens. Actuators B, vol. 106, pp. 837-842, 2005.
    [11]I. Sayago, E. terrado, E. Lafuente, M. C. Horrillo, W. K. Master, A. M. Benito, R. Navarro, E. P. Urriolabeitia, M. T. Martinez, and J. Gutierrez, “Hydrogen sensors based on carbon nanotubes thin films,” Synth. Metals, vol. 148, pp. 15-19, 2005.
    [12]P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997.
    [13]T. Seiyama Ed. , Chemical Sensor Technology, Vol. 1, Elsevier, Amsterdam, 1988.
    [14]D. E. Williams, “Semiconducting oxides as gas-sensitive resistors,” Sens. Actuators B, vol. 57, pp. 1-16, 1999.
    [15]J. Wöllenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Böttner, and I. Eisele, “Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures,” Sens. Actuators B, vol. 93, pp. 442-448, 2003.
    [16]S. Shukla, P. Zhang, H. J. Cho, S. Seal, and L. Ludwig, “Room temperature hydrogen response kinetics of nano-micro-integrated doped tin oxide sensor,” Sens. Actuators B, vol. 120, pp. 573-583, 2007.
    [17]S. Basu and A. Dutta, “Modified heterojunction based on zinc-oxide thin-film for hydrogen gas-sensor application,” Sens. Actuators B, vol. 22, pp. 83-87, 1994.
    [18]Y. Shimizu, F. C. Lin, Y. Takao, and M. Egashira, “Zinc oxide varistor gas sensors: II, effect of chromium (III) oxide and yttrium oxide additives on the hydrogen-sensing properties,” J. Am. Ceram. Soc., vol. 81, pp. 1633-1643, 1998.
    [19]C. C. Lu, Y.S. Huang, J. W. Huang, C. K. Chang, and S. P. Wu, “A Macroporous TiO2 oxygen sensor fabricated using anodic aluminium oxide as an etching mask,” Sensors, vol. 10, pp. 670-683, 2010.
    [20]B. Chwieroth, B. R. Patton, and Y. Wang, “Conduction and Gas-Surface Reaction Modeling in Metal Oxide Gas Sensors,” J. Electroceram. Soc., vol. 6, pp. 27-41, 2001.
    [21]S. Kar, A. Dev, and S. Chaudhuri, “Simple Solvothermal Route To Synthesize ZnO Nanosheets, Nanonails, and Well-Aligned Nanorod Arrays,” J. Phys. Chem. B, vol. 110, pp. 17848-17853, 2006.
    [22]Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties,” Nanotechnology, vol. 18, p. 115603, 2007.
    [23]L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, and C. Liu, “Size Dependence of Gas Sensitivity of ZnO Nanorods,” J. Phys. Chem. C, vol. 111, pp. 1900-1903, 2007.
    [24]P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS Schottky barrier diode hydrogen detector,” IEEE Trans. Electron Devices, vol. 28, pp. 1003-1009, 1981.
    [25]A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, “Zinc oxide nanowires in chemical bath on seeded substrate: Role of hexamine,” J. Sol-Gel Sci Techn., vol. 39, pp. 49-56, 2006.
    [26]J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. Huang, X. Guo, and S. Wu, “ZnO hollow spheres: Preparation, characterization, and gas sensing properties,” Sens. Actuators B, vol. 139, pp. 411-417, 2009.
    [27]J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology, vol. 17, pp. 4995-4998, 2007.
    [28]C. S. Rout, M. Hegde, A. Govindaraj, and C N R Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology, vol. 18, p.205504, 2007.
    [29]I. Lundström, S. Shivaraman, and C. Svensson, L. Lundkvist, “A hydrogen-sensitive MOS field-effect transistor,” Appl. Phys. Lett., vol. 26, pp. 55-57, 1975.
    [30]A. Salehi, A. Nikfarjam, and D.J. Kalantari, “Pd/porous-GaAs Schottky contact for hydrogen sensing application,” Sens Actuators B, vol. 113, pp. 419-427, 2006.
    [31]K. Tsukada, T. Kiwa, T. Yamaguchi, S. Migitaka, Y. Goto, and K. Yokosawa, “A study of fast response characteristics for hydrogen sensing with platinum FET sensor,” Sens. Actuators B, vol. 114, 158-163, 2006.
    [32]M. Jaegle and K. Steiner, “Gas-sensitive GaAs-MESFETs,” Sens. Actuators B, vol. 34, pp. 543-547 1996.
    [33]S. Nakagomi, A. Fukumura, Y. Kokubun, S. Savage, H. Wingbrant, M. Andersson, I. Lundström, M. Löfdahl, and A. L. Spetz, “Influence of gate bias of MISiC-FET gas sensor device on the sensing properties,” Sens Actuators B, vol. 108, pp. 501-507, 2005.
    [34]Y. Morita, K. I. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B, vol. 33, pp. 96-99, 1996.
    [35]C. Wilbertz, H. P. Frerichs, I. Freund, and M. Lehmann, “Suspended-gate- and Lundstrom-FET integrated on a CMOS chip,” Sens. Actuators B, vol. 123-124, pp. 2-6, 2005.
    [36]S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New YorK: Wiley, 1990.
    [37]F. Rahimi and A. Irajizad, “Effective factors on Pd growth on porous silicon by electroless-plating: Response to hydrogen,” Sens. Actuators B, vol. 115, pp. 164-169, 2006.
    [38]D. Davazoglou and T. Dritsas, “Fabrication and calibration of a gas sensor based on chemically vapor deposited WO3 films on silicon substrates application to H2 sensing,” Sens. Actuators B, vol. 77, pp. 359-362, 2001.
    [39]L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., vol. 138, pp. 159-162, 1991.
    [40]T. Kimura, H. Hasegawa, T. Sato, and T. Hashizume, “Sensing mechanism of InP hydrogen sensors using Pt Schottky diodes formed by electrochemical process,” Jpn. J. Appl. Phys., vol. 45, pp. 3414-3422, 2006.
    [41]B. S. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Comparison of MOS and Schottky W/Pt-GaN diodes for hydrogen detection,” Sens. Actuators B, vol. 104, pp. 232-236, 2005.
    [42]J. Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002.
    [43]J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, K. W. Lin, H. I. Chen, and W. C. Liu, “Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes,” Sens. Actuators B, vol. 117, pp. 151-158, 2006.
    [44]J. R. Huang, W. C. Hsu, H. I. Chen, and W. C. Liu, “Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diodes, “Sens Actuators B, vol. 123, pp. 1040-1048, 2007.
    [45]J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals,” Solid-State Electron., vol. 49, pp. 1330-1334, 2005.
    [46]H. Hasegawa and M. Akazawa, “Hydrogen sensing characteristics and mechanism of Pd/AlGaN/GaN Schottky diodes subjected to oxygen gettering,” J. Vac. Sci. Technol. B, vol. 25, pp. 1495-1503, 2007.
    [47]H. T. Wang, T. J. Anderson, B. S. Kang, F. Ren, C. Li, Z. N. Low, J. Lin, B. P. Gila, S. J. Pearton, A. Osinsky, and A. Dabiran, “Stable hydrogen sensors from AlGaN/GaN heterostructure diodes with TiB2-based Ohmic contacts,” Appl. Phys. Lett., vol. 90, pp. 252109, 2007.
    [48]M. Miyoshi, Y. Kuraoka, K. Asai, T. Shibata, and M. Tanaka, “Electrical characterization of Pt/AlGaN/GaN Schottky diodes grown using AlN template and their application to hydrogen gas sensors,” J. Vac. Sci. Technol. B, vol. 25, pp. 1231-1235, 2007.
    [49]H. Hasegawa and M. Akazawa, “Mechanism and control of current transport in GaN and AlGaN Schottky barriers for chemical sensor applications,” Appl. Surf. Sci., vol. 254, pp. 3653-3666, 2008.
    [50]F. K. Yam and Z. Hassan, “Schottky diode based on porous GaN for hydrogen gas sensing application,” Appl. Surf. Sci., vol. 253, pp. 9525-9528, 2003.
    [51]H. Wingbrant, M. Persson, A. E. Åbom, M. Eriksson, B. Andersson, S. Simko, D. J. Kubinski, J. H. Visser, and A. L. Spetz, “Cosputtered metal and SiO2 layers for use in thick-film MISiC NH3 Sensors,” IEEE Sens. J., vol. 6, pp. 887-897, 2006.
    [52]C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong, H. L. Lin, and W. C. Liu, “Study of hydrogen-sensing characteristics of a Pt-oxide-AlGaAs metal-oxide-semiconductor high electron mobility transistor,” J. Vac. Sci. Technol. B, vol. 23, pp. 1943-1947, 2005.
    [53]C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. L. Chen, and W. C. Liu, “Hydrogen sensing properties of a Pt-oxide-Al0.24Ga0.76As high-electron-mobility transistor,” Appl. Phys. Lett., vol. 86, pp. 112103, 2005.
    [54]C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu, and W. C. Liu, “Pd-oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT)-based hydrogen sensor,” IEEE Sensors J., vol. 6, pp. 287-292, 2006.
    [55]C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong, and W. C. Liu, “Characteristics of a Pd-oxide-In0.49Ga0.51P high electron mobility transistor (HEMT)-based hydrogen sensor,” Sens. Actuators B, vol. 113, pp. 29-35, 2006.
    [56]K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang, J. Y. Chen, C. Z. Wu, and W. C. Liu, “A novel Pd/oxide/GaAs metal–insulator–semiconductor field-effect transistor (MISFET) hydrogen sensor,” Semicond. Sci. Technol., vol. 16, pp. 997-1001, 2001.
    [57]C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong, and W.C. Liu, “Temperature-dependent hydrogen sensing characteristics of a Pd/oxide/Al0.24Ga0.76As high electron mobility transistor (HEMT),” IEE Electron. Lett., vol. 40, pp. 1608-1609, 2004.
    [58]C. W. Hung, H. L. Lin, Y. Y. Tsai, P. H. Lai, S. I. Fu, H. I. Chen, and W. C. Liu, “AlGaAs/InGaAs/GaAs transistor-based hydrogen sensing device grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 45, pp. 680-684, 2006.
    [59]C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, H. M. Chuang, and W. C. Liu, “Comprehensive study of a Pd-GaAs high electron mobility transistor (HEMT)-based hydrogen sensor,” Sens. Actuators B, vol. 122, pp. 81-88, 2007.
    [60]C. W. Hung, K. W. Lin, R. C. Liu, Y. Y. Tsai, P. H. Lai, S. I. Fu, T. P. Chen, H. I. Chen, and W. C. Liu, “On the hydrogen sensing properties of a Pd/GaAs transistor-type gas sensor in a nitrogen ambiance,” Sens. Actuators B, vol. 125, pp. 22-29, 2007.
    [61]C. W. Hung, H. I. Chen, T. H. Tsai, C. F. Chang, T. P. Chen, L. Y. Chen, K. Y. Chu, and W. C. Liu, “Hydrogen-induced effect on device performance of a Pd/GaAs-basd heterostructure field-effect transistor (HFET),” J. Electrochem. Soc., vol. 155, pp. H243-H246, 2008.
    [62]D. Filippini and I. Lundström, “Hydrogen detection on bare SiO2 between metal gates,” J. Appl. Phys., vol. 91, pp. 3896-3903, 2002.
    [63]B. S. Kang, R. Mehandru, S. Kim, F. Ren, R. C. Fitch, J. K. Gillespie, N. Moser, G. Jessen, T. Jenkins, R. Dettmer, D. Via, A. Crespo, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Hydrogen-induced reversible changes in drain current in Sc2O3/AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., vol. 84, pp. 4635-4637, 2004.
    [64]I. Dincer, “Environmental and sustainability aspects of hydrogen and fuel cell systems,” Int. J. Energy Res., vol. 31, pp. 29-55, 2007.
    [65]I. Cimalla, F. Will, K. Tonisch, M. Niebelschütz, V. Cimalla,; V. Lebedev, and G.. Kittler, “AlGaN/GaN biosensor-effect of device processing steps on the surface properties and biocompatibility,” Sens. Actuators B, vol. 123, pp. 740-748, 2007.
    [66]H. T. Wang, T. J. Anderson, F. Ren, C. Z. Li, Z. N. Low, J. Lin, B. P. Gila, S. J. Pearton, A. Osinky, and A. Dabiran, “Robust detection of hydrogen using differential AlGaN/GaN high electron mobility transistor sensing diodes,” Appl. Phys. Lett., vol. 89, pp. 242111, 2006.
    [67]H. Hasegawa and M. Akazawa, “Hydrogen sensing characteristics and mechanism of Pd/AlGaN/GaN Schottky diodes subjected to oxygen gettering,” J. Vac. Sci. Technol. B, vol. 25, pp. 1495-1503, 2007.
    [68]A. T. Winzer, R. Goldhahn, G. Gobsch, A. Dadgar, A. Krost, O.Weidemann, M. Stutzmann, and M. Eickhoff, “Electroreflectance spectroscopy of Pt/AlGaN/GaN heterostructures exposed to gaseous hydrogen,” Appl, Phys. Lett., vol. 88, pp. 024101, 2006.
    [69]E. H. Rhoderick and P. H. Williams, Metal-Semiconductor Contacts, 2nd ed. Oxyford, 1988, p. 131.
    [70]J. I. Chyi, C. M. Lee, C. C. Chuo, X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, S. J. Pearton, S. N. G. Chu, and R. G. Wilson, “Temperature dependence of GaN high breakdown voltage diode rectifiers,” Solid-state Electron., vol. 44, p. 613, 2000.
    [71]Po-Hsien Lai, Ssu-I Fu, Yan-Ying Tsai, Chih-Hung Yen, Hung-Ming Chuang, Shiou-Ying Cheng, and Wen-Chau Liu, “Thermal stability improvement of a sulfur–passivated InGaP/InGaAs/GaAs heterostructure field-effect transistor HFET,” IEEE Trans. Device Mater. Reliab., vol. 6, pp. 52-59, 2006.
    [72]Y. I. Chou, C. M. Chen, W. C. Liu, and H. I. Chen, “A new Pd-InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,” IEEE Electron Device Lett., vol. 26, pp. 62-65, 2005.
    [73]T. H. Tsai, J. R. Huang, K. W. Lin, C. W. Hung, W. C. Hsu, H. I. Chen, and W. C. Liu, “Improved hydrogen-sensing properties of a Pt/SiO2/GaN Schottky diode,” Electrochem. Solid State Lett., vol. 10, pp. J158-J160, 2007.
    [74]Z. Tekeli, Ş. Altındal, M. Çakmak, S. Özçelik, D. Çalışkan, and E. Özbay, “The behavior of the I-V-T characteristics of inhomogeneous (Ni/Au)-Al0.3Ga0.7N/AlN/GaN heterostructures at high temperatures,” J. Appl. Phys., 102, p. 054510, 2007.
    [75]E. Monroy, F .Calle, T. Palacios, J. Sanchez-Osorio, M. Verdu, F. J. Sanchez, M. T. Montojo, F. Omnes, Z. Bougrioua, I. Moerman, and P. Ruterana, “Reliability of Schottky contacts on AlGaN,” Phys. Stat. sol., vol. 188, pp. 367-370, 2001.
    [76]M. Eriksson, I. Lundström, and L. G. Ekedahl, “A model of the Temkin isotherm behavior for hydrogen adsorption at Pd-SiO2 interfaces,” J. Appl. Phys., vol. 82, pp. 3143–3146, 1997.
    [77]K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode,” Sens. Actuators B, vol. 94, pp. 145-151, 2003.
    [78]C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, and W. C. Liu, “A novel Pt/In0.52Al0.48As Schottky diode-type hydrogen sensor,” IEEE Electron Device Lett., vol. 27, pp. 951-954, 2006.
    [79]C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
    [80]M. O. Zer, D. E. Yıldız, S. Altındal, and M. M. Bulbu, “Temperature dependence of characteristic parameters of the Au/SnO2/n-Si (MIS) Schottky diodes,” Solid-State Electron., vol. 51, pp. 941–949, 2007.
    [81]H. Kim, M. Schuette, H. Jung, J. Song, J. Lee, W. Lu, and C. M. James, “Passivation effects in Ni/AlGaN/GaN Schottky diodes by annealing,” Appl. Phys. Lett., vol. 89, 053516, 2006.
    [82]C. W. Hung, H. L. Lin, Y. Y. Tsai, P. H. Lai, S. I Fu, H. I. Chen, and W. C. Liu, “New field-effect resistive Pd/oxide/AlGaAs hydrogen sensor based on pseudomorphic high electron mobility transistor,” Jpn. J. Appl. Phys., vol. 45, pp. L780-L782, 2006.
    [83]T. Hashizume and H. Hasegawa, “Effects of nitrogen deficiency on electronic properties of AlGaN surfaces subjected to thermal and plasma processes,” Appl. Surf. Sci., vol. 234, vol. 387-394, 2004.
    [84]C. W. Hung, H. C. Chang, Y. Y. Tsai, P. H. Lai, S. I. Fu, T. P. Chen, H. I. Chen, and W. C. Liu, “Study of a new field-effect resistive hydrogen,” IEEE Trans. Electron Devices, vol. 52, pp. 1224-1231, 2007.
    [85]H. I. Chen, Y. I Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003.
    [86]R. J. Silbey and R. A. Alberty, Physical Chemistry, 3rd ed. New York, 2001.
    [87]Björn Timmer, Wouter Olthuis, and Albert van den Berg, “Ammonia sensors and their applications—a review,” Sens. and Actuators B, vol. 107, pp. 666–677, 2005.
    [88]J. Schalwig, G. Müller, M. Eickhoff, O. Ambacher, and M. Stutzmann, “Gas sensitive GaN/AlGaN-heterostructures,” Sens. Actuators B, vol. 87, pp. 425-430, 2002.
    [89]L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “The ammonia sensitivity of Pt/GaAs Schottky barrier diodes,” J. Appl. Phys., vol. 70, pp. 3348-3354, 1991.
    [90]A. Spetz, M. Armgarth, and I. Lundström, “Hydrogen and ammonia response of metal-silicon dioxide-silicon structures with thin platinum gate,” J. Appl. Phys., vol. 64, pp. 1274-1283, 1988.
    [91]F. Winquist, A. Spetz, M. Armgarth, C. Nylander, and I. Lundstrom, “Modified palladium metal-oxide-semiconductor structures with increased ammonia gas sensitivity,” Appl. Phys. Lett., vol. 43, pp. 839-841. 1983.
    [92]H. Jin, Y. Xu, R. Lin, and W. Han, “A proposal for a novel multi-functional energy system for the production of hydrogen and power,” Int. J. Hydrog. Energy, vol. 33, pp. 9-19, 2008.
    [93]P. P. Edwards, V. L. Kuznetsov, and W. I. F. David, “Hydrogen energy,” Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., vol. 365, pp. 1043-1056, 2007.
    [94]K. I. Lundström, M. S. Shivaraman, and C. M. Svensson “A hydrogen-sensitive Pd-gate MOS transistor,” J. Appl. Phys., vol. 46, pp. 3876, 1975.
    [95]C. Lu, Z. Chen, and K. Saito, “Hydrogen sensors based on Ni/SiO2/Si MOS capacitors,” Sens. and Actuators B, vol. 122, pp. 556-559, 2007.
    [96]C. Pandis, N. Brilis,; E. Bourithis; D. Tsamakis, H. Ali, S. Krishnamoorthy, A. A. Iliadis,; M. Kompitsas, “Low–Temperature Hydrogen Sensors Based on Au Nanoclusters and Schottky Contacts on ZnO Films Deposited by Pulsed Laser Deposition on Si and SiO2 Substrates,” IEEE Sens. J., vol. 7, pp. 448-454, 2007.
    [97]V. I. Garnan, V. I. Balyuba, V. Y. Gritsyk, T. A. Davydova, and V. M. Kalygina, “Mechanism of formation of the response of a hydrogen gas sensor based on a silicon MOS diode,” Semiconductor, vol. 42, pp. 334-338, 2008.
    [98]L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Different catalytic metals (Pt, Pd, and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B, vol. 7, pp. 614–618, 1992.
    [99]X. Zhang, G. Xiong, and W. Yang “A modified electroless plating technique for thin dense palladium composite membranes with enhanced stability,” J. Membr. Sci., vol. 314, pp. 226-237, 2008.
    [100]C. W. Hung, T. H. Tsai, Y. Y. Tsai, K. W. Lin, H. I. Chen, T. P. Chen, and W. C. Liu, “A hydrogen sensor based on an InAlAs material with a Pt catalytic thin film,” Phys. Scr., vol. T129, pp. 345-348, 2007.
    [101]C. W. Hung, T. H. Tsai, H. I. Chen, Y. Y. Tsai, T. P. Chen, L. Y. Chen, Kuei-Yi Chu, and W. C. Liu, “Temperature-dependent hydrogen sensing characteristics of a new Pt/InAlAs Schottky diode-type sensor,” Sens. Actuators B, vol. 128, pp. 574-580, 2008.
    [102]W.E. Hoke, T.D. Kennedy, A. Torabi, C.S. Whelan, P.F. Marsh, R.E. Leoni, C. Xu, and K.C. Hsieh, “High indium metamorphic HEMT on a GaAs substrate,” J. Cryst. Growth, vol. 251, pp. 827-831, 2003.
    [103]P. H. Lai, R-C. Liu, S. I Fu, Y. Y. Tsai, C. W. Hung, T. P. Chen, C. W. Chen, and W. C. Liu, “Comprehensive study of thermal stability performance of metamorphic heterostructure field-effect transistors with Ti/Au and Au metal gates,” J. Electrochem. Soc., vol. 154, pp. H205-H209, 2007.
    [104]J. C. P. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, and K.L. Kavanagh, “Strain relaxation of compositionally graded InxGa1-xAs buffer layers for modulation-doped In0.3Ga0.7As/In0.29Al0.71As heterostructures,” Appl. Phys. Lett., vol. 60, pp. 1129, 1992.
    [105]S. Nakagawa, M. Yokoyama, O. Ichikawa, M. Hata, M. Tanaka, M. Takenaka, S. Takagi, “Investigation of InAlAs Oxide/InP metal-oxide-semiconductor structures formed by wet thermal oxidation,” Jpn. J. Appl. Phys., vol. 48, p. 04C093, 2009
    [106]Y. Y. Tsai, C. W. Hung, S. I Fu, P. H. Lai, H. C. Chang, H. I. Chen, and W. C. Liu, “Comprehensive investigation of hydrogen-sensing properties of Pt/InAlP-based Schottly diodes,” Sens. Actuators B, vol. 124, pp. 535-541, 2007.
    [107]S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New YorK: Wiley, 1990.
    [108]Y. J. Chen, C. S. Lee, T. B. Wang, W. C. Hsu, Y. W. Chen, K. H. Su, and C. L. Wu, “Improved In0.45Al0.55As/In0.45Ga0.55As/In0.65Ga0.35As inverse composite channel metamorphic high electron mobility transistor,” Jpn. J. Appl. Phys., vol. 44, 5903–5908, 2005.
    [109]T. H. Tsai, J. R. Huang, K. W. Lin, Y. Y. Tsai, W. C. Hsu, H. I. Chen, and W. C. Liu, “Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode,” Sens. Actuators B, vol. 129, pp. 292-302, 2008.
    [110]F.E. Jones, Evaporation of Water, CRC Press, 1992.
    [111]B.S. Kang, F. Ren, B.P. Gila, C.R. Abernathy, and S.J. Pearton, “AlGaN/GaN-based metal-oxide-semiconductor diode-based hydrogen gas sensor,” Appl. Phys. Lett. Vol. 84, pp. 1123-1125, 2004.
    [112]C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, H. M. Chuang, and W. C. Liu, “Comprehensive study of a Pd-GaAs high electron mobility transistor (HEMT)-based hydrogen sensor,” Sens. Actuators B, vol. 122, pp. 81-88, 2007.
    [113]Y. S. Lin and B. Y. Chen, “Comprehensive characterization of In0.45Al0.55As/In0.5Ga0.5As/InxAl1−xAs metamorphic high-electron-mobility transistors on GaAs Substrates,” J Electrochem Soc., vol. 153, pp. G1005-G1010, 2006.

    下載圖示 校內:2012-07-02公開
    校外:2010-07-22公開
    QR CODE